×

Density approximations and VaR computation for compound Poisson-lognormal distributions. (English) Zbl 1364.62038

Summary: Parametric approximations of the compound Poisson-lognormal distribution are developed and used to compute Value-at-Risk (VaR). As guidelines for finding an approximation, the skewness-kurtosis space and the tail behavior are considered. The Generalized Beta distribution of the second kind (GB2) and a mixture of lognormals are found to provide a good fit. In certain cases, the GB2 can be estimated by moment-matching, thus providing a simulation-free procedure for VaR computation. For confidence levels larger than 99%, extreme value theory approaches are developed. According to extensive Monte Carlo evidence, the proposed approximations are more efficient than crude Monte Carlo.

MSC:

62E17 Approximations to statistical distributions (nonasymptotic)
62P05 Applications of statistics to actuarial sciences and financial mathematics

Software:

evir; nleqslv; QRM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1287/ijoc.7.1.36 · Zbl 0821.65085 · doi:10.1287/ijoc.7.1.36
[2] Bee M., The Advanced Measurement Approach to Operational Risk pp 123–
[3] Boland P., Statistical and Probabilistic Methods in Actuarial Science · Zbl 1124.62069
[4] Embrechts P., Modelling Extremal Events for Insurance and Finance · Zbl 0798.90024 · doi:10.1007/BF01440733
[5] Faádi Bruno F., Annali di Scienze Matematiche e Fisiche 6 pp 479–
[6] Faádi Bruno F., The Quarterly Journal of Pure and Applied Mathematics 1 pp 359–
[7] DOI: 10.1080/07350015.2013.847842 · doi:10.1080/07350015.2013.847842
[8] Glasserman P., Monte Carlo methods in financial engineering · Zbl 1038.91045 · doi:10.1007/978-0-387-21617-1
[9] Graf M., GB2: Generalized Beta Distribution of the Second Kind: properties, likelihood, estimation
[10] DOI: 10.1016/j.ejor.2004.06.012 · Zbl 1079.90009 · doi:10.1016/j.ejor.2004.06.012
[11] Hasselman B., Nleqslv: Solve systems of non linear equations · Zbl 1346.65034
[12] DOI: 10.1080/00401706.1987.10488243 · doi:10.1080/00401706.1987.10488243
[13] DOI: 10.1103/PhysRev.106.620 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[14] Johnson N. L., Univariate Discrete Distributions, 3. ed.
[15] Johnson N. L., Univariate Continuous Distributions, 2. ed.
[16] Kapur J., Maximum Entropy Models in Science and Engineering · Zbl 0746.00014 · doi:10.2307/2532770
[17] Kleiber C., Statistical Size Distributions in Economics and Actuarial Sciences · Zbl 1044.62014 · doi:10.1002/0471457175
[18] Klugman S. A., Loss Models: From Data to Decisions, 2. ed. · Zbl 1159.62070
[19] DOI: 10.1029/WR015i005p01055 · doi:10.1029/WR015i005p01055
[20] DOI: 10.2307/1913469 · Zbl 0557.62098 · doi:10.2307/1913469
[21] DOI: 10.1111/j.1475-4991.2011.00478.x · doi:10.1111/j.1475-4991.2011.00478.x
[22] McNeil A., Quantitative Risk Management: Concepts, Techniques, Tools · Zbl 1337.91003
[23] Moscadelli M., The Modelling of Operational Risk: Experience With the Analysis of the Data Collected by the Basel Committee, Vol. 517 of Temi di discussione
[24] DOI: 10.1017/S0269964813000053 · Zbl 1275.60021 · doi:10.1017/S0269964813000053
[25] Panjer H. H., Operational Risk Modeling Analytics · Zbl 1258.62101
[26] Pfaff B., Evir: Extreme Values in R
[27] Wolny-Dominiak A., insuranceData
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.