×

Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects. (English) Zbl 1449.62168

Summary: We propose a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish.

MSC:

62J12 Generalized linear models (logistic models)
62H12 Estimation in multivariate analysis
62H10 Multivariate distribution of statistics

Software:

S-PLUS; MEMSS
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Balemi, A., Lee, A., 2009. Comparison of gee1 and gee2 estimation applied to clustered logistic regression. Journal of Statistical Computation and Simulation, 79(4), 361-378. · Zbl 1169.62047
[2] Breslow, N. E., Clayton, D. G., 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88(421), 9-25. · Zbl 0775.62195
[3] Clausen, L. A. W., Bekkevold, D., Hatfield, E. M. C., Mosegaard, H., 2007. Application and validation of otolith microstructure as a stock identification method in mixed atlantic herring (clupea harengus) stocks in the north sea and western baltic. ICES J. Mar. Sci., 64(2), 377-385.
[4] Coull, B. A., Houseman, E. A., Betensky, R. A., 2006. A computationally tractable multivariate random effects model for clustered binary data. Biometrika, 93, 587-599. · Zbl 1108.62066
[5] Cox, D. R., Reid, N., 1987. Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society, Series B, 49, 1-39. · Zbl 0616.62006
[6] Crowder, M., 1987. On linear and quadratic estimating functions. Biometrika, 74(3), 591-597. · Zbl 0635.62077
[7] Davidian, M., Carroll, R. J., 1987. Variance function estimation. Journal of the American Statistical Association, 82(400), 1079-1091. · Zbl 0648.62076
[8] Diggle, P. J., Heagerty, P., Liang, K.-Y., Zeger, S. L., 2002. Analysis of Longitudinal Data. Oxford University Press, Oxford, 2nd edition. · Zbl 1031.62002
[9] Fitzmaurice, G. M., Laird, N. M., Ware, J. H., 2004. Applied longitudinal analysis. WileyInterscience, Hoboken, N.J. · Zbl 1057.62052
[10] Godambe, V. P., 1960. An optimum property of regular maximum likelihood estimation. Annals of Mathematical Statistic, 31(4), 1208-1211. · Zbl 0118.34301
[11] Hall, D. B., 2001. On the application of extended quasi-likelihood to the clustered data case. The Canadian Journal of Statistics, 29(1), 77-97. · Zbl 1035.62071
[12] Hall, D. B., Severini, T. B., 1998. Extended generalized estimating equations for clustered data. Journal of the American Statistical Association, 93(444), 1365-1375. · Zbl 1032.62066
[13] Hall, P., Mller, H.-G., Yao, F., 2008. Modelling sparse generalized longitudinal observations with latent gaussian processes. Journal of the Royal Statistical Society, Series B, 70(4), 703-723. · Zbl 05563365
[14] Hardin, J. W., Hilbe, J. M., 2003. Generalized Estimating Equations. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1023.62068
[15] Henderson, C. R., 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423-447. · Zbl 0335.62048
[16] Heyde, C. C., 1997. Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation. Springer Series in Statistics. Springer. · Zbl 0879.62076
[17] Jiang, J., Luan, Y., Wang, Y.-G., 2007. Iterative estimating equations: Linear convergence and asymptotic properties. Annals of Statistics, 35(5), 2233-2260. · Zbl 1126.62025
[18] Jørgensen, B., 1987. Exponential dispersion models. Journal of the Royal Statistical Society. Series B (Methodological), 49(2), 127-162. · Zbl 0662.62078
[19] Jørgensen, B., 1997. The Theory of Dispersion Models. Chapman & Hall, London. · Zbl 0928.62052
[20] Jørgensen, B., Knudsen, S. J., 2004. Parameter orthogonality and bias adjustment for estimating functions. Scandinavian Journal of Statistics, 31(1), 93-114. · Zbl 1051.62022
[21] Jørgensen, B., Lundbye-Christensen, S., Song, P. X.-K., Sun, L., 1996. A longitudinal study for emergency room visits and air pollution for prince george, brittish columbia. Statistics in Medicine, 15, 823-836.
[22] Jørgensen, B., Lundbye-Christensen, S., Song, P. X.-K., Sun, L., 1999. A state space model for multivariate longitudinal count data. Biometrika, 86(1), 169-181. · Zbl 0916.62062
[23] Jørgensen, B., Song, P.-K., 2007. Stationary state space models for longitudinal data. Canadian Journal of Statistics, 34, 1-23. · Zbl 1143.62052
[24] Jørgensen, B., Song, P. X.-K., 2006. Diagnosis of stationarity in state space models for longitudinal data. Far East J. Theor. Stat., 19, 43-59. · Zbl 1117.62093
[25] Jowaheer, V., Sutradhar, B. C., 2002. Analysing longitudinal count data with overdispersion. Biometrika, 89(2), 389-399. · Zbl 1017.62063
[26] Kendal, W. S., 2004. Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecological Complexity, 1(3), 193-209.
[27] Lee, Y., Nelder, J. A., Pawitan, Y., 2006. Generalized. Linear Models with Random Effects: Unified Analysis via. H-likelihood. Chapman and Hall, London. · Zbl 1110.62092
[28] Liang, K.-Y., Zeger, S. L., 1986. Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22. · Zbl 0595.62110
[29] Liang, K.-Y., Zeger, S. L., Qaqish, B., 1992. Multivariate regression analyses for categorical data (with discussion). Journal of the Royal Statistical Society, Series B, 54(1), 3-40. · Zbl 0775.62172
[30] Ma, R., 1999. An orthodox BLUP approach to generalized linear mixed models. PhD thesis, The University of British Columbia.
[31] Ma, R., Jørgensen, B., 2007. Nested generalized linear mixed models: an orthodox best linear unbiased predictor approach. Journal of the Royal Statistical Society: Series B, 69(4), 625-641. · Zbl 07555368
[32] Ma, R., Jørgensen, B., Willms, J., 2009. Clustered binary data with random cluster sizes: A dual poisson modelling approach. Statist. Mod., 9(2), 137-150. · Zbl 07257698
[33] Ma, R., Krewski, D., Burnett, R. T., 2003. Random effects cox models: a poisson modelling approach. Biometrika, 90(1), 157-169. · Zbl 1035.62114
[34] Magnus, J. R., Neudecker, H., 1999. Matrix Differential Calculus with Applications in Statistics and Econometrics, 2nd Edition. John Wiley & Sons, Chichester. · Zbl 0912.15003
[35] McCullagh, P., Tibshirani, R., 1990. A simple method for the adjustment of profile likelihoods. Journal of the Royal Statistical Society B, 52(2), 325-344. · Zbl 0716.62039
[36] McCulloch, C. E., Searle, S. R., 2001. Generalized, linear, and mixed models. WileyInterscience, New York. · Zbl 0964.62061
[37] Molenberghs, G., Verbeke, G., Dem´etrio, C. G. B., Vieira, A. M. C., 2010. A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical science, 25(3), 325-347. · Zbl 1329.62342
[38] Mosegaard, H., Titus, R., 1987. Daily growth rates of otoliths in yolk sac fry of two salmonid species at five different temperatures. In Kallander, S., Farnholm, B., editors, The V Congress of European Ichthyology, Stockholm, pages 221-227. Swedish Museum of Natural History, Stockholm.
[39] Pannella, G., 1971. Fish otoliths: Daily growth layers and periodical patterns. Science, 173(4002), 1124-1127.
[40] Pinheiro, J. C., Bates, D. M., 2000. Mixed-effects models in S and S-PLUS. Springer, New York. · Zbl 0953.62065
[41] Rotnitzky, A., Jewell, N. P., 1990. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika, 77(3), 485-497. · Zbl 0734.62075
[42] Schall, R., 1991. Estimation in generalized linear models with random effects. Biometrika, 78(4), 719-727. · Zbl 0850.62561
[43] Verbeke, G., Molenberghs, G., 2000. Linear mixed models for longitudinal data. New York: Springer. · Zbl 0956.62055
[44] Wang, M., Hanfelt, J. J., 2007. Orthogonal locally ancillary estimating functions for matched pair studies and errors in covariates. Journal of the Royal Statistical Society, Series B, 69, 411-428. · Zbl 07555359
[45] Wang, Y.-G., Carey, V., 2004. Unbiased estimating equations from working correlation models for irregularly timed repeated measures. Journal of the American Statistical Association, 99(467), 845-853. · Zbl 1117.62442
[46] 36R. Holst and B. Jørgensen
[47] Wolfinger, R., O’Connell, M., 1993. Generalized linear mixed models a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 48(3-4), 233-243. · Zbl 0833.62067
[48] Ziegler, A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.