Mazari, Idriss; Ruiz-Balet, Domènec A fragmentation phenomenon for a nonenergetic optimal control problem: optimization of the total population size in logistic diffusive models. (English) Zbl 07310945 SIAM J. Appl. Math. 81, No. 1, 153-172 (2021). MSC: 35Q92 92D25 49J10 49Q10 92-08 PDF BibTeX XML Cite \textit{I. Mazari} and \textit{D. Ruiz-Balet}, SIAM J. Appl. Math. 81, No. 1, 153--172 (2021; Zbl 07310945) Full Text: DOI
Aleja, D.; Molina-Meyer, M. Nonlinear finite elements: sub- and supersolutions for the heterogeneous logistic equation. (English) Zbl 07303708 J. Differ. Equations 278, 189-219 (2021). MSC: 65L60 65L10 35J25 35B50 PDF BibTeX XML Cite \textit{D. Aleja} and \textit{M. Molina-Meyer}, J. Differ. Equations 278, 189--219 (2021; Zbl 07303708) Full Text: DOI
Chen, Hong-Yi; Gupta, Manak C.; Lee, Alice C.; Lee, Cheng Few Sustainable growth rate, optimal growth rate, and optimal payout ratio: a joint optimization approach. (English) Zbl 1451.91225 Lee, Cheng Few (ed.) et al., Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 3. Hackensack, NJ: World Scientific. 3413-3464 (2021). MSC: 91G50 91B62 PDF BibTeX XML Cite \textit{H.-Y. Chen} et al., in: Handbook of financial econometrics, mathematics, statistics, and machine learning. Volume 3. Hackensack, NJ: World Scientific. 3413--3464 (2021; Zbl 1451.91225) Full Text: DOI
Delgado, Manuel; Molina-Becerra, Mónica; Suárez, Antonio A logistic type equation in \(\mathbb{R}^N\) with a nonlocal reaction term via bifurcation method. (English) Zbl 1450.35046 J. Math. Anal. Appl. 493, No. 1, Article ID 124532, 19 p. (2021). MSC: 35B32 35J61 35R09 35B09 PDF BibTeX XML Cite \textit{M. Delgado} et al., J. Math. Anal. Appl. 493, No. 1, Article ID 124532, 19 p. (2021; Zbl 1450.35046) Full Text: DOI
Molina-Meyer, Marcela; Prieto Medina, Frank Richard A collocation-spectral method to solve the bi-dimensional degenerate diffusive logistic equation with spatial heterogeneities in circular domains. (English) Zbl 07312833 Rend. Ist. Mat. Univ. Trieste 52, 311-343 (2020). MSC: 35J61 35J70 65N35 65P30 92D25 PDF BibTeX XML Cite \textit{M. Molina-Meyer} and \textit{F. R. Prieto Medina}, Rend. Ist. Mat. Univ. Trieste 52, 311--343 (2020; Zbl 07312833) Full Text: DOI Link
Borysenko, O. D.; Borysenko, D. O. Asymptotic behavior of a solution of the non-autonomous logistic stochastic differential equation. (English. Ukrainian original) Zbl 1455.60075 Theory Probab. Math. Stat. 101, 39-50 (2020); translation from Teor. Jmovirn. Mat. Stat. 101, 40-48 (2019). MSC: 60H10 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Theory Probab. Math. Stat. 101, 39--50 (2020; Zbl 1455.60075); translation from Teor. Jmovirn. Mat. Stat. 101, 40--48 (2019) Full Text: DOI
Kashchenko, S. A. Local dynamics of chains of van der Pol coupled systems. (English. Russian original) Zbl 1455.35278 Math. Notes 108, No. 6, 901-905 (2020); translation from Mat. Zametki 108, No. 6, 936-940 (2020). MSC: 35R09 35K20 35K58 35B35 PDF BibTeX XML Cite \textit{S. A. Kashchenko}, Math. Notes 108, No. 6, 901--905 (2020; Zbl 1455.35278); translation from Mat. Zametki 108, No. 6, 936--940 (2020) Full Text: DOI
Shen, Bo-Wen Homoclinic orbits and solitary waves within the nondissipative Lorenz model and KdV equation. (English) Zbl 07281779 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050257, 15 p. (2020). MSC: 34C37 PDF BibTeX XML Cite \textit{B.-W. Shen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050257, 15 p. (2020; Zbl 07281779) Full Text: DOI
Yao, Ting; Guo, Yongfeng; Fan, Shunhou; Wei, Fang The non-stationary state solution of nonlinear drift Fokker-Planck equation with non-Gaussian noise and its application. (Chinese. English summary) Zbl 07266466 Chin. J. Eng. Math. 37, No. 3, 303-313 (2020). MSC: 35Q84 93C10 93E03 PDF BibTeX XML Cite \textit{T. Yao} et al., Chin. J. Eng. Math. 37, No. 3, 303--313 (2020; Zbl 07266466) Full Text: DOI
Cintra, Willian; Santos Júnior, João R.; Siciliano, Gaetano; Suárez, Antonio Existence results of positive solutions for Kirchhoff type equations via bifurcation methods. (English) Zbl 1448.35216 Math. Z. 295, No. 3-4, 1143-1161 (2020). MSC: 35J62 35J25 PDF BibTeX XML Cite \textit{W. Cintra} et al., Math. Z. 295, No. 3--4, 1143--1161 (2020; Zbl 1448.35216) Full Text: DOI
Khader, M. M.; Sweilam, N. H.; Kharrat, B. N. Numerical simulation for solving fractional Riccati and logistic differential equations as a difference equation. (English) Zbl 1448.65071 Appl. Appl. Math. 15, No. 1, 655-665 (2020). MSC: 65L06 41A30 34A08 26A33 65D25 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Appl. Math. 15, No. 1, 655--665 (2020; Zbl 1448.65071) Full Text: Link
Zhang, Zhiqiang; Yang, Xiangfeng Uncertain population model. (English) Zbl 1436.92012 Soft Comput. 24, No. 4, 2417-2423 (2020). MSC: 92D25 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{X. Yang}, Soft Comput. 24, No. 4, 2417--2423 (2020; Zbl 1436.92012) Full Text: DOI
Izadi, Mohammad A comparative study of two Legendre-collocation schemes applied to fractional logistic equation. (English) Zbl 1442.65117 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 71, 18 p. (2020). MSC: 65L03 65L05 26A33 33C45 42C10 PDF BibTeX XML Cite \textit{M. Izadi}, Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 71, 18 p. (2020; Zbl 1442.65117) Full Text: DOI
Hu, Yuanyang; Hao, Xinan; Song, Xianfa; Du, Yihong A free boundary problem for spreading under shifting climate. (English) Zbl 1448.35584 J. Differ. Equations 269, No. 7, 5931-5958 (2020). MSC: 35R35 35K20 35K58 PDF BibTeX XML Cite \textit{Y. Hu} et al., J. Differ. Equations 269, No. 7, 5931--5958 (2020; Zbl 1448.35584) Full Text: DOI
Glyzin, S. D.; Kashchenko, S. A. Family of finite-dimensional maps induced by a logistic equation with a delay. (Russian. English summary) Zbl 1447.65178 Mat. Model. 32, No. 3, 19-46 (2020). MSC: 65N99 35B32 35R07 92D25 92D40 35Q92 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{S. A. Kashchenko}, Mat. Model. 32, No. 3, 19--46 (2020; Zbl 1447.65178) Full Text: DOI MNR
Heihoff, Frederic Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term. (English) Zbl 1434.35246 Z. Angew. Math. Phys. 71, No. 3, Paper No. 80, 23 p. (2020). MSC: 35Q91 35B40 35K55 91D10 PDF BibTeX XML Cite \textit{F. Heihoff}, Z. Angew. Math. Phys. 71, No. 3, Paper No. 80, 23 p. (2020; Zbl 1434.35246) Full Text: DOI
Aleja, D.; Antón, I.; López-Gómez, J. Solution components in a degenerate weighted BVP. (English) Zbl 1439.35256 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111690, 20 p. (2020). MSC: 35K57 35B09 35J25 PDF BibTeX XML Cite \textit{D. Aleja} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111690, 20 p. (2020; Zbl 1439.35256) Full Text: DOI
He, Tieshan; He, Lang; Huang, Yehui Infinitely many nodal solutions for generalized logistic equations without odd symmetry on reaction. (English) Zbl 1436.35116 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111741, 20 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 35J92 PDF BibTeX XML Cite \textit{T. He} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111741, 20 p. (2020; Zbl 1436.35116) Full Text: DOI
Chen, Chuang-Xin; Chen, Zong-Xuan Some results concerning meromorphic solutions for the Pielou logistic equation. (English) Zbl 1445.39015 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1775-1797 (2020). Reviewer: Risto Korhonen (Joensuu) MSC: 39A45 30D35 30D30 PDF BibTeX XML Cite \textit{C.-X. Chen} and \textit{Z.-X. Chen}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1775--1797 (2020; Zbl 1445.39015) Full Text: DOI
Morris, Quinn; Nash, Jessica; Payne, Catherine Analysis of steady states for classes of reaction-diffusion equations with hump-shaped density-dependent dispersal on the boundary. (English) Zbl 1440.34021 Involve 13, No. 1, 9-19 (2020). MSC: 34B09 34B18 34C60 92D25 34B08 PDF BibTeX XML Cite \textit{Q. Morris} et al., Involve 13, No. 1, 9--19 (2020; Zbl 1440.34021) Full Text: DOI
Sun, Jian-Wen Sharp profiles for periodic logistic equation with nonlocal dispersal. (English) Zbl 1432.35010 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 46, 19 p. (2020). MSC: 35B10 35B40 35K57 35P05 35B09 35R09 PDF BibTeX XML Cite \textit{J.-W. Sun}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 46, 19 p. (2020; Zbl 1432.35010) Full Text: DOI
Lois-Prados, Cristina; Precup, Radu Positive periodic solutions for Lotka-Volterra systems with a general attack rate. (English) Zbl 1433.34066 Nonlinear Anal., Real World Appl. 52, Article ID 103024, 17 p. (2020). MSC: 34C60 92D25 37C60 34C25 PDF BibTeX XML Cite \textit{C. Lois-Prados} and \textit{R. Precup}, Nonlinear Anal., Real World Appl. 52, Article ID 103024, 17 p. (2020; Zbl 1433.34066) Full Text: DOI
Mazari, Idriss; Nadin, Grégoire; Privat, Yannick Optimal location of resources maximizing the total population size in logistic models. (English. French summary) Zbl 1433.92038 J. Math. Pures Appl. (9) 134, 1-35 (2020). Reviewer: Attila Dénes (Szeged) MSC: 92D25 49K20 35Q92 PDF BibTeX XML Cite \textit{I. Mazari} et al., J. Math. Pures Appl. (9) 134, 1--35 (2020; Zbl 1433.92038) Full Text: DOI
Zhu, Ling The asymptotic behavior of a logistic SIR epidemic model with stochastic perturbation. (English) Zbl 07295878 J. Univ. Sci. Technol. China 49, No. 11, 902-911 (2019). MSC: 34C60 34D05 34D20 60H10 92D30 34C05 34F05 34D10 PDF BibTeX XML Cite \textit{L. Zhu}, J. Univ. Sci. Technol. China 49, No. 11, 902--911 (2019; Zbl 07295878) Full Text: DOI
Nudee, K.; Chinviriyasit, S.; Chinviriyasit, W. The effect of backward bifurcation in controlling measles transmission by vaccination. (English) Zbl 1448.92327 Chaos Solitons Fractals 123, 400-412 (2019). MSC: 92D30 34C60 34D05 34C23 PDF BibTeX XML Cite \textit{K. Nudee} et al., Chaos Solitons Fractals 123, 400--412 (2019; Zbl 1448.92327) Full Text: DOI
Abdeljawad, Thabet; Al-Mdallal, Qasem M.; Jarad, Fahd Fractional logistic models in the frame of fractional operators generated by conformable derivatives. (English) Zbl 1448.34006 Chaos Solitons Fractals 119, 94-101 (2019). MSC: 34A08 34A12 34D20 34C60 65L03 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., Chaos Solitons Fractals 119, 94--101 (2019; Zbl 1448.34006) Full Text: DOI
Cortés, J.-C.; Navarro-Quiles, Ana; Romero, J.-V.; Roselló, M.-D. Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loève expansion and the random variable transformation technique. (English) Zbl 07264734 Commun. Nonlinear Sci. Numer. Simul. 72, 121-138 (2019). MSC: 60 34 PDF BibTeX XML Cite \textit{J. C. Cortés} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 121--138 (2019; Zbl 07264734) Full Text: DOI
Caraballo, Tomás; Colucci, Renato; López-de-la-Cruz, Javier; Rapaport, Alain A way to model stochastic perturbations in population dynamics models with bounded realizations. (English) Zbl 07264468 Commun. Nonlinear Sci. Numer. Simul. 77, 239-257 (2019); corrigendum ibid. 96, Article ID 105681, 5 p. (2021). MSC: 92D25 34F05 34C60 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Commun. Nonlinear Sci. Numer. Simul. 77, 239--257 (2019; Zbl 07264468) Full Text: DOI
Yamaka, Woraphon; Maneejuk, Paravee Bayesian empirical likelihood estimation of smooth kink regression. (English) Zbl 07255576 Thai J. Math., Spec. Iss.: Structural change modeling and optimization in econometrics 2018, 217-233 (2019). MSC: 35K05 91G20 PDF BibTeX XML Cite \textit{W. Yamaka} and \textit{P. Maneejuk}, Thai J. Math. , 217--233 (2019; Zbl 07255576) Full Text: Link
Maneejuk, Paravee; Yamaka, Woraphon; Leeahtam, Pisit Modeling nonlinear dependence structure using logistic smooth transition copula model. (English) Zbl 07255570 Thai J. Math., Spec. Iss.: Structural change modeling and optimization in econometrics 2018, 121-134 (2019). MSC: 35K05 91G20 PDF BibTeX XML Cite \textit{P. Maneejuk} et al., Thai J. Math. , 121--134 (2019; Zbl 07255570) Full Text: Link
Borysenko, O. D.; Borysenko, D. O. Stochastic permanence of solution to stochastic non-autonomous logistic equation with jumps. (Ukrainian. English summary) Zbl 1449.60097 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 10-13 (2019). MSC: 60H10 34F05 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 10--13 (2019; Zbl 1449.60097)
Buedo-Fernández, Sebastián On the gamma-logistic map and applications to a delayed neoclassical model of economic growth. (English) Zbl 1437.91288 Nonlinear Dyn. 96, No. 1, 219-227 (2019). MSC: 91B62 34K20 PDF BibTeX XML Cite \textit{S. Buedo-Fernández}, Nonlinear Dyn. 96, No. 1, 219--227 (2019; Zbl 1437.91288) Full Text: DOI
Yoshioka, Hidekazu A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity. (English) Zbl 1448.92388 J. Biol. Dyn. 13, No. 1, 148-176 (2019). MSC: 92D40 92D25 93E20 34H05 35D40 65M06 PDF BibTeX XML Cite \textit{H. Yoshioka}, J. Biol. Dyn. 13, No. 1, 148--176 (2019; Zbl 1448.92388) Full Text: DOI
Borysenko, O. D.; Borysenko, D. O. Persistence and extinction in a stochastic nonautonomous logistic model of population dynamics. (English. Ukrainian original) Zbl 1447.60083 Theory Probab. Math. Stat. 99, 67-75 (2019); translation from Teor. Jmovirn. Mat. Stat. 99, 63-70 (2018). MSC: 60H10 92D25 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Theory Probab. Math. Stat. 99, 67--75 (2019; Zbl 1447.60083); translation from Teor. Jmovirn. Mat. Stat. 99, 63--70 (2018) Full Text: DOI
Tarasov, Vasily E.; Tarasova, Valentina V. Logistic equation with continuously distributed lag and application in economics. (English) Zbl 1430.37128 Nonlinear Dyn. 97, No. 2, 1313-1328 (2019). MSC: 37N40 91B55 PDF BibTeX XML Cite \textit{V. E. Tarasov} and \textit{V. V. Tarasova}, Nonlinear Dyn. 97, No. 2, 1313--1328 (2019; Zbl 1430.37128) Full Text: DOI
Cortés, Juan Carlos; Navarro-Quiles, Ana; Romero, José-Vicente; Roselló, María-Dolores (CMMSE2018 paper) Solving the random Pielou logistic equation with the random variable transformation technique: theory and applications. (English) Zbl 1431.60125 Math. Methods Appl. Sci. 42, No. 17, 5708-5717 (2019). MSC: 60K37 34F05 60H35 PDF BibTeX XML Cite \textit{J. C. Cortés} et al., Math. Methods Appl. Sci. 42, No. 17, 5708--5717 (2019; Zbl 1431.60125) Full Text: DOI
Calatayud, Julia; Cortés, Juan Carlos; Jornet, Marc Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations. (English) Zbl 1432.60060 Math. Methods Appl. Sci. 42, No. 18, 7259-7267 (2019). MSC: 60H10 34F05 60H35 PDF BibTeX XML Cite \textit{J. Calatayud} et al., Math. Methods Appl. Sci. 42, No. 18, 7259--7267 (2019; Zbl 1432.60060) Full Text: DOI
Gao, Jianzhong; Zhang, Tailei An SIRS epidemic model with pulse vaccination, birth pulse and Logistic death rate. (English) Zbl 1449.34132 Commun. Math. Res. 35, No. 3, 247-263 (2019). MSC: 34C60 34A37 34C25 34D23 92D30 34D05 PDF BibTeX XML Cite \textit{J. Gao} and \textit{T. Zhang}, Commun. Math. Res. 35, No. 3, 247--263 (2019; Zbl 1449.34132) Full Text: DOI
Wang, Jiangli; Chen, Yu; Zhang, Weiping Parsimonious mean-covariance modeling for longitudinal data with ARMA errors. (English) Zbl 1434.62101 J. Syst. Sci. Complex. 32, No. 6, 1675-1692 (2019). MSC: 62H12 62M10 62J12 62P10 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Syst. Sci. Complex. 32, No. 6, 1675--1692 (2019; Zbl 1434.62101) Full Text: DOI
Srivastav, Akhil Kumar; Ghosh, Mini Assessing the impact of treatment on the dynamics of dengue fever: a case study of India. (English) Zbl 1433.92063 Appl. Math. Comput. 362, Article ID 124533, 17 p. (2019). MSC: 92D30 34D23 34C60 34D05 92C60 62P10 PDF BibTeX XML Cite \textit{A. K. Srivastav} and \textit{M. Ghosh}, Appl. Math. Comput. 362, Article ID 124533, 17 p. (2019; Zbl 1433.92063) Full Text: DOI
Conejero, J. Alberto; Lizama, Carlos; Mira-Iglesias, Ainara; Rodero, Cristóbal Visibility graphs of fractional Wu-Baleanu time series. (English) Zbl 1429.37046 J. Difference Equ. Appl. 25, No. 9-10, 1321-1331 (2019). MSC: 37M10 26A33 94A24 PDF BibTeX XML Cite \textit{J. A. Conejero} et al., J. Difference Equ. Appl. 25, No. 9--10, 1321--1331 (2019; Zbl 1429.37046) Full Text: DOI
Glyzin, S. D.; Kashchenko, S. A. Finite-dimensional mappings describing the dynamics of a logistic equation with delay. (English. Russian original) Zbl 1427.37027 Dokl. Math. 100, No. 1, 380-384 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 487, No. 6, 611-616 (2019). MSC: 37D45 37M05 37N25 39A10 39A33 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{S. A. Kashchenko}, Dokl. Math. 100, No. 1, 380--384 (2019; Zbl 1427.37027); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 487, No. 6, 611--616 (2019) Full Text: DOI
Chauhan, Vijeyata; Srivastava, Pankaj Kumar A numeric three stage trio-geometric mean Runge-Kutta approach over Verhulst equation on population dynamics. (English) Zbl 1431.65108 Nonlinear Stud. 26, No. 2, 379-389 (2019). MSC: 65L06 65L05 65L20 PDF BibTeX XML Cite \textit{V. Chauhan} and \textit{P. K. Srivastava}, Nonlinear Stud. 26, No. 2, 379--389 (2019; Zbl 1431.65108) Full Text: Link
Satoh, Daisuke Model selection among growth curve models that have the same number of parameters. (English) Zbl 1428.62502 Cogent Math. Stat. 6, Article ID 1660503, 18 p. (2019). MSC: 62P20 91B62 PDF BibTeX XML Cite \textit{D. Satoh}, Cogent Math. Stat. 6, Article ID 1660503, 18 p. (2019; Zbl 1428.62502) Full Text: DOI
Satoh, Daisuke Property of logistic data exposed with Gompertz model and resistance to noise in actual data. (English) Zbl 1426.39021 Japan J. Ind. Appl. Math. 36, No. 3, 937-957 (2019). MSC: 39A60 62J05 91B62 PDF BibTeX XML Cite \textit{D. Satoh}, Japan J. Ind. Appl. Math. 36, No. 3, 937--957 (2019; Zbl 1426.39021) Full Text: DOI
Mondal, Debashis; Wang, Chunxiao A matrix-free method for spatial-temporal Gaussian state-space models. (English) Zbl 1442.62203 Stat. Sin. 29, No. 4, 2205-2227 (2019). Reviewer: Mikhail P. Moklyachuk (Kyïv) MSC: 62M10 62M30 62M40 62H35 62J12 62P12 PDF BibTeX XML Cite \textit{D. Mondal} and \textit{C. Wang}, Stat. Sin. 29, No. 4, 2205--2227 (2019; Zbl 1442.62203) Full Text: DOI
Gao, Jianzhong; Zhang, Tailei Analysis on an SEIR epidemic model with logistic death rate of virus mutation. (English) Zbl 1438.34143 J. Math. Res. Appl. 39, No. 3, 259-268 (2019). MSC: 34C60 34D23 92D30 PDF BibTeX XML Cite \textit{J. Gao} and \textit{T. Zhang}, J. Math. Res. Appl. 39, No. 3, 259--268 (2019; Zbl 1438.34143) Full Text: DOI
Yang, Jinji; Tian, Yanling Traveling wave solutions for a non-monotone logistic equation in a cylinder. (English) Zbl 1423.35062 Appl. Math. Lett. 96, 126-130 (2019). MSC: 35C07 35K58 35R10 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Y. Tian}, Appl. Math. Lett. 96, 126--130 (2019; Zbl 1423.35062) Full Text: DOI
Markov, Svetoslav Reaction networks reveal new links between Gompertz and Verhulst growth functions. (English) Zbl 1425.92216 Biomath 8, No. 1, 43-56 (2019). MSC: 92D40 92C42 PDF BibTeX XML Cite \textit{S. Markov}, Biomath 8, No. 1, 43--56 (2019; Zbl 1425.92216) Full Text: DOI Link
Delgado, M.; Molina-Becerra, M.; Santos Júnior, J. R.; Suárez, A. A non-local perturbation of the logistic equation in \(\mathbb{R}^N\). (English) Zbl 1425.35024 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 147-158 (2019). MSC: 35J15 35J60 PDF BibTeX XML Cite \textit{M. Delgado} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 147--158 (2019; Zbl 1425.35024) Full Text: DOI
Zhang, Shen; Zhao, Peixin; Li, Gaorong; Xu, Wangli Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data. (English) Zbl 1417.62105 J. Multivariate Anal. 171, 37-52 (2019). MSC: 62G08 62J12 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Multivariate Anal. 171, 37--52 (2019; Zbl 1417.62105) Full Text: DOI
Little, John B. Modeling and data analysis. An introduction with environmental applications. (English) Zbl 1419.00010 Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4869-1/hbk; 978-1-4704-5200-1/ebook). xv, 323 p. (2019). Reviewer: Ludwig Paditz (Dresden) MSC: 00A71 62-01 62-07 39A06 62P12 97-01 97A40 26A06 54C30 PDF BibTeX XML Cite \textit{J. B. Little}, Modeling and data analysis. An introduction with environmental applications. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1419.00010)
Satoh, Daisuke; Matsumura, Ryutaro Monotonic decrease of upper limit estimated with Gompertz model for data described using logistic model. (English) Zbl 1408.39015 Japan J. Ind. Appl. Math. 36, No. 1, 79-96 (2019). MSC: 39A60 62J05 91B62 PDF BibTeX XML Cite \textit{D. Satoh} and \textit{R. Matsumura}, Japan J. Ind. Appl. Math. 36, No. 1, 79--96 (2019; Zbl 1408.39015) Full Text: DOI
Yameni Noupoue, Yves Yannick; Tandoğdu, Yücel; Awadalla, Muath On numerical techniques for solving the fractional logistic differential equation. (English) Zbl 1414.39005 Adv. Difference Equ. 2019, Paper No. 108, 13 p. (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 39A13 26A33 34A08 65L12 PDF BibTeX XML Cite \textit{Y. Y. Yameni Noupoue} et al., Adv. Difference Equ. 2019, Paper No. 108, 13 p. (2019; Zbl 1414.39005) Full Text: DOI
Jiang, Hong-Yan; Yue, Rong-Xian Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors. (English) Zbl 1417.62220 Comput. Stat. 34, No. 1, 71-87 (2019). MSC: 62K05 62J12 62P10 65C60 PDF BibTeX XML Cite \textit{H.-Y. Jiang} and \textit{R.-X. Yue}, Comput. Stat. 34, No. 1, 71--87 (2019; Zbl 1417.62220) Full Text: DOI
Shi, Qingyan; Shi, Junping; Song, Yongli Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. (English) Zbl 1404.35262 Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 467-486 (2019). MSC: 35K57 35B10 35B32 35B36 35R10 92B05 92D40 PDF BibTeX XML Cite \textit{Q. Shi} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 467--486 (2019; Zbl 1404.35262) Full Text: DOI
Delgado, M.; Duarte, I. B. M.; Suárez, A. Positive solutions of a nonlocal singular elliptic equation by means of a non-standard bifurcation theory. (English) Zbl 1401.35074 J. Math. Anal. Appl. 469, No. 2, 897-915 (2019). MSC: 35J60 35B09 35B32 PDF BibTeX XML Cite \textit{M. Delgado} et al., J. Math. Anal. Appl. 469, No. 2, 897--915 (2019; Zbl 1401.35074) Full Text: DOI
Wang, Aili; Li, Yanying; Tian, Bing A class of H7N9 avian influenza models with media coverage. (Chinese. English summary) Zbl 1424.92048 Math. Pract. Theory 48, No. 20, 165-172 (2018). MSC: 92D30 PDF BibTeX XML Cite \textit{A. Wang} et al., Math. Pract. Theory 48, No. 20, 165--172 (2018; Zbl 1424.92048)
da Silva, José Luis; Kondratiev, Yuri; Tkachov, Pasha Fractional kinetics in a spatial ecology model. (English) Zbl 1424.92055 Methods Funct. Anal. Topol. 24, No. 3, 275-287 (2018). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 92D40 60K35 PDF BibTeX XML Cite \textit{J. L. da Silva} et al., Methods Funct. Anal. Topol. 24, No. 3, 275--287 (2018; Zbl 1424.92055) Full Text: Link
Kashchenko, S. A. Dynamics of a delay logistic equation with slowly varying coefficients. (English. Russian original) Zbl 1421.34048 Comput. Math. Math. Phys. 58, No. 12, 1926-1936 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 1999-2013 (2018). Reviewer: Zhanyuan Hou (London) MSC: 34K26 34K20 34K18 34K17 34K13 34K12 PDF BibTeX XML Cite \textit{S. A. Kashchenko}, Comput. Math. Math. Phys. 58, No. 12, 1926--1936 (2018; Zbl 1421.34048); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 1999--2013 (2018) Full Text: DOI
Dawson, Matthew; Müller, Hans-Georg Dynamic modeling of conditional quantile trajectories, with application to longitudinal snippet data. (English) Zbl 1409.62070 J. Am. Stat. Assoc. 113, No. 524, 1612-1624 (2018). MSC: 62G05 62J12 62P10 PDF BibTeX XML Cite \textit{M. Dawson} and \textit{H.-G. Müller}, J. Am. Stat. Assoc. 113, No. 524, 1612--1624 (2018; Zbl 1409.62070) Full Text: DOI
Khastan, A. Fuzzy logistic difference equation. (English) Zbl 1407.39005 Iran. J. Fuzzy Syst. 15, No. 7, 55-66 (2018). MSC: 39A20 PDF BibTeX XML Cite \textit{A. Khastan}, Iran. J. Fuzzy Syst. 15, No. 7, 55--66 (2018; Zbl 1407.39005) Full Text: DOI
Sun, Sumei; Meng, Yue; Zhu, Jiazhen; Lin, Zhigui Dynamics of the logistic harvesting model on periodically evolving domains. (Chinese. English summary) Zbl 1424.35052 J. Biomath. 33, No. 1, 84-90 (2018). MSC: 35B40 35K57 92D25 PDF BibTeX XML Cite \textit{S. Sun} et al., J. Biomath. 33, No. 1, 84--90 (2018; Zbl 1424.35052)
Farkas, József Z.; Smith, Gary T.; Webb, Glenn F. A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis. (English) Zbl 1406.92339 Math. Biosci. Eng. 15, No. 5, 1203-1224 (2018). MSC: 92C55 35Q92 PDF BibTeX XML Cite \textit{J. Z. Farkas} et al., Math. Biosci. Eng. 15, No. 5, 1203--1224 (2018; Zbl 1406.92339) Full Text: DOI
Anton, Cristina; Yong, Alan Stochastic dynamics and survival analysis of a cell population model with random perturbations. (English) Zbl 1406.92486 Math. Biosci. Eng. 15, No. 5, 1077-1098 (2018). MSC: 92D25 60H30 PDF BibTeX XML Cite \textit{C. Anton} and \textit{A. Yong}, Math. Biosci. Eng. 15, No. 5, 1077--1098 (2018; Zbl 1406.92486) Full Text: DOI
Lachowicz, Mirosław A class of microscopic individual models corresponding to the macroscopic logistic growth. (English) Zbl 1406.60116 Math. Methods Appl. Sci. 41, No. 18, 8446-8454 (2018). MSC: 60J75 92D25 35Q92 35R09 37N25 45K05 PDF BibTeX XML Cite \textit{M. Lachowicz}, Math. Methods Appl. Sci. 41, No. 18, 8446--8454 (2018; Zbl 1406.60116) Full Text: DOI
Ezz-Eldien, S. S. On solving fractional logistic population models with applications. (English) Zbl 1413.34164 Comput. Appl. Math. 37, No. 5, 6392-6409 (2018). MSC: 34C60 34A08 92D25 PDF BibTeX XML Cite \textit{S. S. Ezz-Eldien}, Comput. Appl. Math. 37, No. 5, 6392--6409 (2018; Zbl 1413.34164) Full Text: DOI
Kashchenko, S. A. Dynamics of a delay logistic equation with diffusion and coefficients rapidly oscillating in space variable. (English. Russian original) Zbl 1410.34227 Dokl. Math. 98, No. 2, 522-525 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 482, No. 5, 508-512 (2018). Reviewer: Leonid Berezanski (Beer-Sheva) MSC: 34K25 34K26 34E05 34C15 PDF BibTeX XML Cite \textit{S. A. Kashchenko}, Dokl. Math. 98, No. 2, 522--525 (2018; Zbl 1410.34227); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 482, No. 5, 508--512 (2018) Full Text: DOI
Khader, M. M.; Adel, M. Chebyshev wavelet procedure for solving FLDEs. (English) Zbl 1406.65054 Acta Appl. Math. 158, No. 1, 1-10 (2018). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65L60 34A08 41A30 PDF BibTeX XML Cite \textit{M. M. Khader} and \textit{M. Adel}, Acta Appl. Math. 158, No. 1, 1--10 (2018; Zbl 1406.65054) Full Text: DOI
Bi, Xuan; Qu, Annie A mixed-effects estimating equation approach to nonignorable missing longitudinal data with refreshment samples. (English) Zbl 1406.62079 Stat. Sin. 28, No. 4, Part 1, 1653-1675 (2018). MSC: 62J12 62P25 PDF BibTeX XML Cite \textit{X. Bi} and \textit{A. Qu}, Stat. Sin. 28, No. 4, Part 1, 1653--1675 (2018; Zbl 1406.62079) Full Text: DOI
Du, Yihong; Wei, Lei; Zhou, Ling Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary. (English) Zbl 1408.35227 J. Dyn. Differ. Equations 30, No. 4, 1389-1426 (2018). Reviewer: Luisa Consiglieri (Lisboa) MSC: 35R35 35K20 92B05 PDF BibTeX XML Cite \textit{Y. Du} et al., J. Dyn. Differ. Equations 30, No. 4, 1389--1426 (2018; Zbl 1408.35227) Full Text: DOI arXiv
Carl, Siegfried; Costa, David G.; Tehrani, Hossein Extremal solutions of logistic-type equations in exterior domain in \(\mathbb{R}^2\). (English) Zbl 1401.35115 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176, 272-287 (2018). MSC: 35J91 35J25 PDF BibTeX XML Cite \textit{S. Carl} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176, 272--287 (2018; Zbl 1401.35115) Full Text: DOI
Devi, Sapna; Gupta, Nivedita Logistic growth vs regrowth model with delay for the harvesting of vegetation biomass with its effects on CO\(_2\). (English) Zbl 1400.34070 Nonlinear Stud. 25, No. 2, 315-332 (2018). MSC: 34C60 34K60 92D40 34C11 34C23 34D20 34D05 PDF BibTeX XML Cite \textit{S. Devi} and \textit{N. Gupta}, Nonlinear Stud. 25, No. 2, 315--332 (2018; Zbl 1400.34070) Full Text: Link
Parsons, Todd L. Invasion probabilities, hitting times, and some fluctuation theory for the stochastic logistic process. (English) Zbl 1398.92216 J. Math. Biol. 77, No. 4, 1193-1231 (2018). MSC: 92D25 60J28 60J85 60F10 PDF BibTeX XML Cite \textit{T. L. Parsons}, J. Math. Biol. 77, No. 4, 1193--1231 (2018; Zbl 1398.92216) Full Text: DOI arXiv
Gyori, István; Nakata, Yukihiko; Röst, Gergely Unbounded and blow-up solutions for a delay logistic equation with positive feedback. (English) Zbl 1397.34114 Commun. Pure Appl. Anal. 17, No. 6, 2845-2854 (2018). MSC: 34K12 34K20 PDF BibTeX XML Cite \textit{I. Gyori} et al., Commun. Pure Appl. Anal. 17, No. 6, 2845--2854 (2018; Zbl 1397.34114) Full Text: DOI
Matsuzawa, Hiroshi A free boundary problem for the Fisher-KPP equation with a given moving boundary. (English) Zbl 1397.35348 Commun. Pure Appl. Anal. 17, No. 5, 1821-1852 (2018). MSC: 35R35 35K20 35K55 35K57 35K58 PDF BibTeX XML Cite \textit{H. Matsuzawa}, Commun. Pure Appl. Anal. 17, No. 5, 1821--1852 (2018; Zbl 1397.35348) Full Text: DOI arXiv
Dorini, Fabio A.; Bobko, Nara; Dorini, Leyza B. A note on the logistic equation subject to uncertainties in parameters. (English) Zbl 1400.34096 Comput. Appl. Math. 37, No. 2, 1496-1506 (2018). Reviewer: Toader Morozan (Bucureşti) MSC: 34F05 60H10 PDF BibTeX XML Cite \textit{F. A. Dorini} et al., Comput. Appl. Math. 37, No. 2, 1496--1506 (2018; Zbl 1400.34096) Full Text: DOI
Poleszczuk, Jan; Walker, Rachel; Moros, Eduardo G.; Latifi, Kujtim; Caudell, Jimmy J.; Enderling, Heiko Predicting patient-specific radiotherapy protocols based on mathematical model choice for proliferation saturation index. (English) Zbl 1394.92063 Bull. Math. Biol. 80, No. 5, 1195-1206 (2018). MSC: 92C50 PDF BibTeX XML Cite \textit{J. Poleszczuk} et al., Bull. Math. Biol. 80, No. 5, 1195--1206 (2018; Zbl 1394.92063) Full Text: DOI
Wang, Chunlin; Marriott, Paul; Li, Pengfei Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations. (English) Zbl 06869758 J. Multivariate Anal. 166, 182-197 (2018). MSC: 62H15 62H10 62E20 PDF BibTeX XML Cite \textit{C. Wang} et al., J. Multivariate Anal. 166, 182--197 (2018; Zbl 06869758) Full Text: DOI
Berezansky, Leonid; Braverman, Elena A new stability test for linear neutral differential equations. (English) Zbl 1390.34211 Appl. Math. Lett. 81, 79-85 (2018). MSC: 34K20 34K06 34K40 PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{E. Braverman}, Appl. Math. Lett. 81, 79--85 (2018; Zbl 1390.34211) Full Text: DOI
Kink, Peter Some analysis of a stochastic logistic growth model. (English) Zbl 1390.60162 Stochastic Anal. Appl. 36, No. 2, 240-256 (2018). MSC: 60G44 60H10 34F05 PDF BibTeX XML Cite \textit{P. Kink}, Stochastic Anal. Appl. 36, No. 2, 240--256 (2018; Zbl 1390.60162) Full Text: DOI
Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping Free boundary models for mosquito range movement driven by climate warming. (English) Zbl 1402.35283 J. Math. Biol. 76, No. 4, 841-875 (2018). Reviewer: Marin I. Marin (Braşov) MSC: 35Q92 35K55 35R35 92D40 92D25 65M06 92-08 65H10 35A01 35A02 PDF BibTeX XML Cite \textit{W. Bao} et al., J. Math. Biol. 76, No. 4, 841--875 (2018; Zbl 1402.35283) Full Text: DOI
Salahshour, Soheil; Ahmadian, Ali; Mahata, Animesh; Mondal, Sankar Prasad; Alam, Shariful The behavior of logistic equation with alley effect in fuzzy environment: fuzzy differential equation approach. (English) Zbl 1383.65075 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 62, 20 p. (2018). MSC: 65L05 34A07 65L20 PDF BibTeX XML Cite \textit{S. Salahshour} et al., Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 62, 20 p. (2018; Zbl 1383.65075) Full Text: DOI
Bashiri, Tahereh; Vaezpour, S. Mansour; Nieto, Juan J. Approximating solution of Fabrizio-Caputo Volterra’s model for population growth in a closed system by homotopy analysis method. (English) Zbl 1384.92048 J. Funct. Spaces 2018, Article ID 3152502, 10 p. (2018). MSC: 92D25 34A08 PDF BibTeX XML Cite \textit{T. Bashiri} et al., J. Funct. Spaces 2018, Article ID 3152502, 10 p. (2018; Zbl 1384.92048) Full Text: DOI
Jiang, Dan-Hua; Wang, Zhi-Cheng The diffusive logistic equation on periodically evolving domains. (English) Zbl 06802304 J. Math. Anal. Appl. 458, No. 1, 93-111 (2018). MSC: 35 34 PDF BibTeX XML Cite \textit{D.-H. Jiang} and \textit{Z.-C. Wang}, J. Math. Anal. Appl. 458, No. 1, 93--111 (2018; Zbl 06802304) Full Text: DOI
Bohner, Martin; Dannan, Fozi M.; Streipert, Sabrina A nonautonomous Beverton-Holt equation of higher order. (English) Zbl 1375.39025 J. Math. Anal. Appl. 457, No. 1, 114-133 (2018). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{M. Bohner} et al., J. Math. Anal. Appl. 457, No. 1, 114--133 (2018; Zbl 1375.39025) Full Text: DOI
Yüzbaşı, Şuayip; Karaçayır, Murat A Galerkin-like approach to solve continuous population models for single and interacting species. (English) Zbl 07244548 Kuwait J. Sci. 44, No. 2, 9-26 (2017). MSC: 65L03 92D30 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı} and \textit{M. Karaçayır}, Kuwait J. Sci. 44, No. 2, 9--26 (2017; Zbl 07244548) Full Text: Link
Ongun, Mevlude Yakit; Kocabiyik, Mehmet Lie symmetry analysis of the Hanta-epidemic systems. (English) Zbl 1427.92092 J. Math. Comput. Sci., JMCS 17, No. 2, 332-344 (2017). MSC: 92D30 34A05 34C14 PDF BibTeX XML Cite \textit{M. Y. Ongun} and \textit{M. Kocabiyik}, J. Math. Comput. Sci., JMCS 17, No. 2, 332--344 (2017; Zbl 1427.92092) Full Text: DOI
Jung, Soon-Mo; Nam, Young Woo Hyers-Ulam stability of Pielou logistic difference equation. (English) Zbl 1412.39017 J. Nonlinear Sci. Appl. 10, No. 6, 3115-3122 (2017). MSC: 39A30 39B82 PDF BibTeX XML Cite \textit{S.-M. Jung} and \textit{Y. W. Nam}, J. Nonlinear Sci. Appl. 10, No. 6, 3115--3122 (2017; Zbl 1412.39017) Full Text: DOI
Borysenko, O. D.; Borysenko, D. O. Non-autonomous stochastic logistic differential equation with non-centered Poisson measure. (English) Zbl 1413.60046 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2017, No. 4, 9-14 (2017). MSC: 60H10 34F05 PDF BibTeX XML Cite \textit{O. D. Borysenko} and \textit{D. O. Borysenko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2017, No. 4, 9--14 (2017; Zbl 1413.60046)
Maslov, Lev A.; Chebotarev, Vladimir I. Modeling statistics and kinetics of the natural aggregation structures and processes with the solution of generalized logistic equation. (English) Zbl 1400.82068 Physica A 468, 691-697 (2017). MSC: 82B24 PDF BibTeX XML Cite \textit{L. A. Maslov} and \textit{V. I. Chebotarev}, Physica A 468, 691--697 (2017; Zbl 1400.82068) Full Text: DOI
Ortigueira, Manuel; Bengochea, Gabriel A new look at the fractionalization of the logistic equation. (English) Zbl 1400.34011 Physica A 467, 554-561 (2017). MSC: 34A08 34A25 PDF BibTeX XML Cite \textit{M. Ortigueira} and \textit{G. Bengochea}, Physica A 467, 554--561 (2017; Zbl 1400.34011) Full Text: DOI
Tang, Ruirui; Zhang, Juping Establishment and analysis of SIV model of sexually transmitted disease with voluntary vaccination strategy. (Chinese. English summary) Zbl 1413.92044 J. North Univ. China, Nat. Sci. 38, No. 6, 557-562 (2017). MSC: 92D30 92C60 PDF BibTeX XML Cite \textit{R. Tang} and \textit{J. Zhang}, J. North Univ. China, Nat. Sci. 38, No. 6, 557--562 (2017; Zbl 1413.92044) Full Text: DOI
Gao, Ya’nan; Hu, Xinli; Yang, Gaoyan Stability analysis of HTLV-I model with logistic growth. (Chinese. English summary) Zbl 1399.34123 Basic Sci. J. Text. Univ. 30, No. 3, 325-330 (2017). MSC: 34C60 34D23 92D30 92C60 PDF BibTeX XML Cite \textit{Y. Gao} et al., Basic Sci. J. Text. Univ. 30, No. 3, 325--330 (2017; Zbl 1399.34123) Full Text: DOI
Pitolli, Francesca; Pezza, Laura A fractional spline collocation method for the fractional-order logistic equation. (English) Zbl 1385.65046 Fasshauer, Gregory E. (ed.) et al., Approximation theory XV: San Antonio 2016. Selected papers based on the presentations at the international conference, San Antonio, TX, USA, May 22–25, 2016. Cham: Springer (ISBN 978-3-319-59911-3/hbk; 978-3-319-59912-0/ebook). Springer Proceedings in Mathematics & Statistics 201, 307-318 (2017). MSC: 65L05 34A08 65L60 34A34 PDF BibTeX XML Cite \textit{F. Pitolli} and \textit{L. Pezza}, in: Approximation theory XV: San Antonio 2016. Selected papers based on the presentations at the international conference, San Antonio, TX, USA, May 22--25, 2016. Cham: Springer. 307--318 (2017; Zbl 1385.65046) Full Text: DOI
Caicedo, A.; Cruz, F. W.; Limeira, R.; Viana, A. A diffusive logistic equation with concentrated and nonlocal sources. (English) Zbl 1390.35112 Math. Methods Appl. Sci. 40, No. 16, 5975-5985 (2017). MSC: 35K10 35K58 35A01 35B09 35B60 PDF BibTeX XML Cite \textit{A. Caicedo} et al., Math. Methods Appl. Sci. 40, No. 16, 5975--5985 (2017; Zbl 1390.35112) Full Text: DOI
Cecconello, M. S.; Dorini, F. A.; Haeser, G. On fuzzy uncertainties on the logistic equation. (English) Zbl 1383.92063 Fuzzy Sets Syst. 328, 107-121 (2017). MSC: 92D25 34A07 PDF BibTeX XML Cite \textit{M. S. Cecconello} et al., Fuzzy Sets Syst. 328, 107--121 (2017; Zbl 1383.92063) Full Text: DOI
Huang, Po-Hsien; Chen, Hung; Weng, Li-Jen A penalized likelihood method for structural equation modeling. (English) Zbl 1402.62126 Psychometrika 82, No. 2, 329-354 (2017). MSC: 62H25 62J07 62J05 62H12 62J12 62P15 PDF BibTeX XML Cite \textit{P.-H. Huang} et al., Psychometrika 82, No. 2, 329--354 (2017; Zbl 1402.62126) Full Text: DOI
Church, Kevin E. M.; Liu, Xinzhi Bifurcation analysis and application for impulsive systems with delayed impulses. (English) Zbl 1383.34094 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1750186, 23 p. (2017). MSC: 34K18 34A37 34C23 34K45 34C45 34K19 PDF BibTeX XML Cite \textit{K. E. M. Church} and \textit{X. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1750186, 23 p. (2017; Zbl 1383.34094) Full Text: DOI
Yang, Xiao-Jun; Machado, J. A. Tenreiro A new insight into complexity from the local fractional calculus view point: modelling growths of populations. (English) Zbl 1381.92088 Math. Methods Appl. Sci. 40, No. 17, 6070-6075 (2017). MSC: 92D25 PDF BibTeX XML Cite \textit{X.-J. Yang} and \textit{J. A. T. Machado}, Math. Methods Appl. Sci. 40, No. 17, 6070--6075 (2017; Zbl 1381.92088) Full Text: DOI