zbMATH — the first resource for mathematics

Simulation of a diffusion flame in turbulent mixing layer by the flame hole dynamics model with level-set method. (English) Zbl 1121.80320
Summary: The partial quenching structure of diffusion flames, arising from the phenomenon of turbulent flame lift off, is investigated in a turbulent mixing layer by the method of flame hole dynamics. Modification of the flame hole dynamics by including the level-set method is specifically aimed to properly take into account the effect of slow flame-edge response near the crossover scalar dissipation rate at which the edge propagation speed vanishes. Simulating the flame hole dynamics with the level-set method results in two major improvements. The first improvement is observed in stabilizing lifted turbulent diffusion flames. The three necessary conditions for lifted stabilization are proposed and numerically tested to show that rapid variation of the edge propagation speed near the crossover scalar dissipation rate helps lifted stabilization. Secondly, an improvement in the statistical properties of the stationary turbulence reacting state is observed in that (1) the lift-off height is found to be higher because of the streamwise flow pushing the turbulent edge front to the downstream direction and (2) the partial burning probability, conditioned with the scalar dissipation rate, exhibits a realistic smooth transition across the crossover scalar dissipation rate.

80A25 Combustion
80M25 Other numerical methods (thermodynamics) (MSC2010)
76F25 Turbulent transport, mixing
Full Text: DOI
[1] Williams F. A., Combustion Theory,, 2. ed. (1985)
[2] DOI: 10.1016/0094-5765(74)90066-6 · doi:10.1016/0094-5765(74)90066-6
[3] DOI: 10.1080/00102209108951775 · doi:10.1080/00102209108951775
[4] DOI: 10.1023/A:1004287411382 · Zbl 0887.76087 · doi:10.1023/A:1004287411382
[5] DOI: 10.1016/S0360-1285(02)00008-4 · doi:10.1016/S0360-1285(02)00008-4
[6] DOI: 10.1016/0010-2180(91)90056-H · doi:10.1016/0010-2180(91)90056-H
[7] DOI: 10.1016/S0010-2180(96)00145-9 · doi:10.1016/S0010-2180(96)00145-9
[8] DOI: 10.1016/S0010-2180(98)00154-0 · doi:10.1016/S0010-2180(98)00154-0
[9] Wohl K., Proceedings of the Combustion Institute 3 pp 3– (1949)
[10] DOI: 10.1016/0010-2180(66)90028-9 · doi:10.1016/0010-2180(66)90028-9
[11] DOI: 10.2514/3.8089 · Zbl 0512.76114 · doi:10.2514/3.8089
[12] Hartley L. J., Ph.D. thesis, in: The structure of laminar triple-flames: implication for turbulent nonpremixed combustion (1991)
[13] Green D., Archivum Combustionis 12 pp 91– (1992)
[14] Hartley L. J., Progress in Astronautics and Aeronautics 152 pp 70– (1993)
[15] Lee S. R., KSME International Journal 17 pp 1776– (2003)
[16] Kim J., Combustion Theory and Modelling 177 (2005)
[17] Sethian J. A., Level Set Methods (1996) · Zbl 0859.76004
[18] DOI: 10.1006/jcph.1994.1155 · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[19] DOI: 10.1088/1364-7830/1/2/004 · Zbl 0956.76070 · doi:10.1088/1364-7830/1/2/004
[20] DOI: 10.1088/1364-7830/8/1/007 · doi:10.1088/1364-7830/8/1/007
[21] Ko Y. S., KSME International Journal 16 pp 1710– (2002) · doi:10.1007/BF03021673
[22] Liñán A., Fundamental Aspects of Combustion (1993)
[23] DOI: 10.1017/CBO9780511612701 · Zbl 0955.76002 · doi:10.1017/CBO9780511612701
[24] DOI: 10.1016/S0010-2180(97)81765-8 · doi:10.1016/S0010-2180(97)81765-8
[25] DOI: 10.1088/1364-7830/2/4/007 · Zbl 0934.80001 · doi:10.1088/1364-7830/2/4/007
[26] DOI: 10.1088/1364-7830/3/4/307 · Zbl 1156.80410 · doi:10.1088/1364-7830/3/4/307
[27] DOI: 10.1016/S0082-0784(00)80611-6 · doi:10.1016/S0082-0784(00)80611-6
[28] DOI: 10.1016/j.combustflame.2004.02.001 · doi:10.1016/j.combustflame.2004.02.001
[29] DOI: 10.1016/j.proci.2004.07.014 · doi:10.1016/j.proci.2004.07.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.