×

An adaptive-order rational Arnoldi method for model-order reductions of linear time-invariant systems. (English) Zbl 1105.93019

Summary: This work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) method, to be applied to large-scale linear systems. It is based on an extension of the classical multi-point Padé approximation (or the so-called multi-point moment matching), using the rational Arnoldi iteration approach. Given a set of predetermined expansion points, an exact expression for the error between the output moment of the original system and that of the reduced-order system, related to each expansion point, is derived first. In each iteration of the proposed adaptive-order rational Arnoldi algorithm, the expansion frequency corresponding to the maximum output moment error will be chosen. Hence, the corresponding reduced-order model yields the greatest improvement in output moments among all reduced-order models of the same order. A detailed theoretical study is described. The proposed method is very appropriate for large-scale electronic systems, including VLSI interconnect models and digital filter designs. Several examples are considered to demonstrate the effectiveness and efficiency of the proposed method.

MSC:

93B11 System structure simplification
93C15 Control/observation systems governed by ordinary differential equations
93A15 Large-scale systems

Software:

JDQR; JDQZ
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Celik, M.; Ocali, O.; Tan, M. A.; Atalar, A., Pole-zero computation in microwave circuits using multipoint Padé approximation, IEEE Trans. Circuits Syst. I—Fundam. Theor. Appl., 42, 1, 6-13 (1995)
[2] Li, L. Y.; Bridges, G. E.; Ciric, I. R., Analysis of high-speed interconnects using efficient multipoint Padé approximation, Electron. Lett., 37, 874-875 (2001)
[3] Gallivan, K.; Grimme, E. J.; Dooren, P. V., A rational Lanczos algorithm for model reduction, Numer. Algorithms, 12, 33-63 (1996) · Zbl 0870.65053
[4] Feldmann, P.; Freund, R. W., Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., 14, 5, 639-649 (1995)
[5] Gallivan, K.; Grimme, E. J.; Dooren, P. V., Asymptotic waveform evaluation via a Lanczos method, Appl. Math. Lett., 7, 75-80 (1994) · Zbl 0810.65067
[6] Antoulas, A. C.; Sorensen, D.; Gugercin, S., A survey of model reduction methods for large-scale systems, Contemp. Math., 280, 193-219 (2001) · Zbl 1048.93014
[7] Bai, Z., Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Appl. Numer. Math., 43, 1-2, 9-44 (2002) · Zbl 1012.65136
[8] (Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (2000), SIAM: SIAM Philadelphia) · Zbl 0965.65058
[9] Bai, Z.; Freund, R. W., A partial Padé-via-Lanczos method for reduced-order modeling, Linear Algebra Appl., 332-334, 139-164 (2001) · Zbl 0980.93012
[10] Bai, Z.; Slone, R. D.; Smith, W. T.; Ye, Q., Error bound for reduced system model by Padé approximation via the Lanczos process, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., 18, 2, 133-141 (1999)
[11] Boley, D. L., Krylov space methods on state-space control models, Circuits Syst. Signal Process., 13, 6, 733-758 (1992) · Zbl 0833.93024
[13] Grimme, E. J.; Sorensen, D. C.; Dooren, P. V., Model reduction of state space systems via an implicityly restarted Lanczos method, Numer. Algorithms, 12, 1-31 (1996) · Zbl 0870.65052
[14] Silveira, L. M.; Kamon, M.; Elfadel, I.; White, J., A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits, Comput. Meth. Appl. Mech. Eng., 169, 377-389 (1999) · Zbl 0941.78013
[17] Ruhe, A., Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl., 58, 391-405 (1984) · Zbl 0554.65025
[18] Ruhe, A., Rational Krylov algorithms for nonsymmetric eigenvalue problems II: Matrix pairs, Linear Algebra Appl., 197, 283-295 (1994) · Zbl 0810.65031
[19] Ruhe, A., The rational Krylov algorithm for nonsymmetric eigenvalue problems III: Complex shifts for real matrices, Bit, 34, 165-176 (1994) · Zbl 0810.65032
[20] Ruhe, A., Rational Krylov, a practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci. Comput., 19, 1535-1551 (1998) · Zbl 0914.65036
[22] Trefethen, L. N.; Bau, D., Numerical Linear Algebra (1997), SIAM: SIAM Philadelphia · Zbl 0874.65013
[23] Golub, G. H.; Loan, C. F.V., Matrix Computations (1996), The Johns Hopkins University Press
[24] Odabasioglu, A.; Celik, M.; Pileggi, L. T., PRIMA: passive reduced-order interconnect macromodeling algorithm, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., 17, 645-653 (1998)
[25] Wang, J. M.; Chu, C. C.; Yu, Q.; Kuh, E. S., On projection-based algorithms for model-order reduction of interconnects, IEEE Trans. Circuits Syst. I—Fundam. Theor. Appl., 49, 11, 1563-1585 (2002) · Zbl 1368.93183
[26] Celik, M.; Cangellaris, A. C., Simulation of dispersive multiconductor transmission lines by Padé approximation via the Lanczos process, IEEE Trans. Microw. Theory Tech., 44, 12, 2525-2535 (1996)
[27] Freund, R. W., Krylov-subspace methods for reduced-order modeling in circuit simulation, J. Comput. Appl. Math., 123, 395-421 (2000) · Zbl 0964.65082
[28] Beliczynski, B.; Kale, I.; Cain, G. D., Approximation of FIR by IIR digital filters: an algorithm based on balanced model reduction, IEEE Trans. Signal Process., 40, 532-542 (1992)
[29] Brandenstein, H.; Unbehauen, R., Least-squares approximation of FIR by IIR digital filters, IEEE Trans. Signal Process., 46, 21-30 (1998)
[30] Holford, S.; Agathoklis, P., The use of model reduction techniques for designing IIR filters with linear phase in the passband, IEEE Trans. Signal Process., 44, 2396-2404 (1996)
[31] Li, L.; Xie, L.; Yan, W. Y.; Soh, Y. C., Design of low-order linear-phase IIR filters via orthogonal projection, IEEE Trans. Signal Process., 47, 448-457 (1999)
[32] Sreeram, V.; Agathoklis, P., Design of linear-phase IIR filters via impulse-response gramians, IEEE Trans. Signal Process., 40, 389-394 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.