×

Numerical modeling of laminar-turbulent transition in a boundary layer at a high freestream turbulence level. (English. Russian original) Zbl 1200.76081

Fluid Dyn. 41, No. 6, 923-937 (2006); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2006, No. 6, 77-93 (2006).
Summary: Disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined by numerically solving the Navier-Stokes equations. The results of direct numerical simulation of isotropic homogeneous turbulence are taken as initial conditions. The solution obtained models laminar-turbulent transition in the flat-plate boundary layer at a high freestream turbulence level, time measured from the onset of the motion serving as the longitudinal coordinate. The solution makes it possible to estimate the effect of different factors, such as flow unsteadiness and nonlinearity and the characteristics of the freestream velocity fluctuation spectrum, on laminar-turbulent transition in the boundary layer.

MSC:

76F06 Transition to turbulence
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Morkovin, M. V.; Wells, C. S., The many faces of transition, Viscous Drag Reduction, 1 (1969), New York: Plenum Press, New York
[2] Gulyaev, A. N.; Kozlov, V. E.; Kuznetsov, V. R.; Mineev, B. I.; Sekundov, A. N., Interaction of a boundary layer with external turbulence, Fluid Dynamics, 24, 5, 700 (1989) · doi:10.1007/BF01051722
[3] Westin, K. J. A.; Boiko, A. V.; Klingmann, B. G.; Kozlov, V. V.; Alfredsson, P. H., Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity, J. Fluid Mech., 281, 193 (1994) · doi:10.1017/S0022112094003083
[4] Matsubara, M.; Alfredsson, P. H., Disturbance growth in boundary layers subjected to free stream turbulence, J. Fluid Mech., 430, 149 (2001) · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[5] Bertolotti, F. P., Response of the Blasius boundary layer to free-stream vorticity, Phys. Fluids, 9, 2286 (1997) · doi:10.1063/1.869350
[6] Andersson, P.; Berggren, M.; Henningson, D. S., Optimal disturbances and bypass transition in boundary layers, Phys. Fluids, 11, 134 (1999) · Zbl 1147.76308 · doi:10.1063/1.869908
[7] Luchini, P., Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations, J. Fluid Mech., 404, 289 (2000) · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[8] Leib, S. J.; Wundrow, D. W.; Goldstein, M. E., Effects of free-stream turbulence and other vortical disturbances on a laminar boundary layer, J. Fluid Mech., 380, 169 (1999) · Zbl 0951.76032 · doi:10.1017/S0022112098003504
[9] Ustinov, M. V., Receptivity of the flat-plate boundary layer to free-stream turbulence, Fluid Dynamics, 38, 3, 397 (2003) · Zbl 1067.76540 · doi:10.1023/A:1025193905823
[10] Wundrow, D. W.; Goldstein, M. E., Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow, J. Fluid Mech., 426, 229 (2001) · Zbl 1010.76029 · doi:10.1017/S0022112000002354
[11] Ustinov, M. V., Numerical modeling of the development of a streaky structure in a boundary layer at a high freestream turbulence level, Fluid Dynamics, 39, 2, 260 (2004) · Zbl 1178.76182 · doi:10.1023/B:FLUI.0000030310.02131.46
[12] Rozhdestvenksy, B. L.; Simakin, I. N., Secondary flows in a plane channel: their relationship and comparison with turbulent flows, J. Fluid Mech., 147, 261 (1984) · Zbl 0578.76031 · doi:10.1017/S0022112084002081
[13] Gulyaev, A. N.; Kozlov, V. E.; Kuznetsov, V. R., Penetration of three-dimensional low-frequency freestream velocity fluctuations into the laminar flat-plate boundary layer, Tr. TsIAM, 1287, 197 (1991)
[14] B. L. Rozhdestvenksii and M. I. Stoinov, “Algorithms for integrating the Navier-Stokes equations with analogs of the mass, momentum, and energy conservation laws,” Keldysh Institute of AppliedMathematics, Preprint No. 119 (1987).
[15] Ustinov, M. V., Investigation of subharmonic transition in a plane channel by direct numerical simulation, Fluid Dynamics, 28, 3, 332 (1993) · Zbl 0797.76028 · doi:10.1007/BF01051146
[16] Jones, P.; Mazur, O.; Uriba, V., On the receptivity of the by-pass transition to the length scale of the outer stream turbulence, Eur. J. Mech., Ser. B, Fluids, 19, 707 (2000) · Zbl 0960.76502
[17] Crow, S. C., The spanwise perturbations of two-dimensional boundary layers, J. Fluid Mech., 24, 153 (1965) · doi:10.1017/S0022112066000557
[18] T. M. Fisher, S. Hein, and U. Dallmann, “A theoretical approach for describing the secondary instability features in the three-dimensional boundary layer flows,” AIAA Paper, No. 0080 (1993).
[19] Bakchinov, A. A.; Grek, G. R.; Klingmann, B. G. B.; Kozlov, V. V., Transition experiments in a boundary layer with embedded streamwise vortices, Phys. Fluids, 7, 820 (1995) · doi:10.1063/1.868605
[20] Yu. S. Kachanov, V. V. Kozlov, V. Ya. Levchenko, and M. P. Ramazanov, “Nature of the K-breakdown of a laminar boundary layer. Part 1,” Izv. SO AN SSSR, Ser. Tekhn. Nauk, No. 2, 124 (1989).
[21] Bakchinov, A. A.; Grek, G. R.; Katasonov, M. M.; Kozlov, V. V., Experimental investigation of the interaction of longitudinal streaky structures with a high-frequency disturbance, Fluid Dynamics, 33, 5, 667 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.