×

On the generation of sampling schemes for magnetic resonance imaging. (English) Zbl 1439.94003

Summary: Magnetic resonance imaging (MRI) is probably one of the most successful application fields of compressed sensing. Despite recent advances, there is still a large discrepancy between theories and most actual implementations. Overall, many important questions related to sampling theory remain open. In this paper, we attack one of them: given a set of sampling constraints (e.g., measuring Fourier coefficients along physically plausible trajectories), how to optimally design a sampling pattern? We first outline three aspects that should be carefully designed by inspecting the literature, namely admissibility, limit of the empirical measure, and coverage speed. To address them jointly, we then propose an original approach which consists of projecting a probability distribution onto a set of admissible measures. The proposed algorithm permits handling arbitrary constraints and automatically generates efficient sampling patterns for MRI as shown on realistic simulations. We achieve a 20-fold undersampling factor at very high 2D resolution (100 \(\mu\)m isotropic) on physically plausible sampling trajectories with a gain in SNR of 2–3 dB on reconstructed MR images as compared to more standard sampling patterns (e.g., radial, spiral).

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A15 Information theory (general)
94A20 Sampling theory in information and communication theory
41A29 Approximation with constraints
68W25 Approximation algorithms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. Adcock, A. Hansen, C. Poon, and B. Roman, {\it Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing}, 2013.
[2] E. Arias-Castro, E. J. Candes, and M. Davenport, {\it On the fundamental limits of adaptive sensing}, IEEE Trans. Inf. Theory, 59 (2013), pp. 472-481. · Zbl 1364.94106
[3] A. Beck and M. Teboulle, {\it A fast iterative shrinkage-thresholding algorithm for linear inverse problems}, SIAM J. Imaging Sci., 2 (2009), pp. 183-202, . · Zbl 1175.94009
[4] J. Bigot, C. Boyer, and P. Weiss, {\it An analysis of block sampling strategies in compressed sensing}, IEEE Trans. Inf. Theory, 62 (2016), pp. 2125-2139. · Zbl 1359.94063
[5] C. Boyer, J. Bigot, and P. Weiss, {\it Compressed sensing with structured sparsity and structured acquisition}, preprint, , 2015. · Zbl 1454.94010
[6] C. Boyer, P. Ciuciu, P. Weiss, and S. Mériaux, {\it HYR \(2\) PICS: Hybrid regularized reconstruction for combined parallel imaging and compressive sensing in MRI}, in Proceedings of the 9th IEEE ISBI Conference, Barcelona, Spain, 2012, pp. 66-69, .
[7] C. Boyer, P. Weiss, and J. Bigot, {\it An algorithm for variable density sampling with block-constrained acquisition}, SIAM J. Imaging Sci., 7 (2014), pp. 1080-1107, . · Zbl 1343.94021
[8] R. Bridson, {\it Fast poisson disk sampling in arbitrary dimensions}, in ACM SIGGRAPH 2007, ACM New York, 2007, 22.
[9] E. K. Brodsky, A. A. Samsonov, and W. F. Block, {\it Characterizing and correcting gradient errors in non-Cartesian imaging: Are gradient errors linear time-invariant (LTI)?}, Magn. Reson. Med., 62 (2009), pp. 1466-1476, .
[10] E. Candès, J. Romberg, and T. Tao, {\it Stable signal recovery from incomplete and inaccurate measurements}, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223, . · Zbl 1098.94009
[11] E. Candès and T. Tao, {\it Near optimal signal recovery from random projections: universal encoding strategies}, IEEE Trans. Inf. Theory, 52 (2006), pp. 5406-5425. · Zbl 1309.94033
[12] E. J. Candès and Y. Plan, {\it A probabilistic and RIPless theory of compressed sensing}, IEEE Trans. Inf. Theory, 57 (2011), pp. 7235-7254. · Zbl 1365.94174
[13] N. Chauffert, {\it Compressed sensing along physicaly plausible sampling trajectories}, Ph.D. thesis, Université Paris-Sud, Orsay, France, 2015.
[14] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, {\it Variable density sampling with continuous trajectories. Application to MRI}, SIAM J. Imaging Sci., 7 (2014), pp. 1962-1992, . · Zbl 1308.94047
[15] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, {\it A projection method on measure sets}, Constructive Approximation, in press, . · Zbl 1362.41003
[16] N. Chauffert, P. Ciuciu, and P. Weiss, {\it Variable density compressed sensing in MRI. Theoretical vs. heuristic sampling strategies}, in Proceedings of the 10th IEEE ISBI Conference on Biomedical Imaging, San Francisco, CA, 2013, pp. 298-301.
[17] N. Chauffert, P. Weiss, J. Kahn, and P. Ciuciu, {\it A projection algorithm for gradient waveforms design in magnetic resonance imaging}, IEEE Trans. Med. Imaging, 35 (2016), pp. 2026-2039. · Zbl 1439.94003
[18] A. T. Curtis and C. K. Anand, {\it Random volumetric MRI trajectories via genetic algorithms}, Int. J. Biomed. Imaging, 2008, 6, .
[19] D. L. Donoho, {\it Compressed sensing}, IEEE Trans. Inf. Theory, 52 (2006), pp. 1289-1306. · Zbl 1288.94016
[20] D. D. Liu, D. Liang, X. Liu, and Y.-T. Zhang, {\it Under-sampling trajectory design for compressed sensing MRI}, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2012, pp. 73-76, .
[21] G. M. Fatterpekar, T. P. Naidich, B. N. Delman, J. G. Aguinaldo, S. H. Gultekin, C. C. Sherwood, P. R. Hof, B. P. Drayer, and Z. A. Fayad, {\it Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla}, Am. J. Neuroradiol., 23 (2002), pp. 1313-1321.
[22] M. Freiberger, F. Knoll, K. Bredies, H. Scharfetter, and R. Stollberger, {\it The agile library for biomedical image reconstruction using GPU acceleration}, Comput. Sci. Eng., 15 (2013), pp. 34-44.
[23] K. Gröchenig, J. L. Romero, J. Unnikrishnan, and M. Vetterli, {\it On minimal trajectories for mobile sampling of bandlimited fields}, Appl. Comput. Harmon. Anal., 39 (2015), pp. 487-510. · Zbl 1339.94028
[24] M. Guerquin-Kern, M. Häberlin, K. P. Pruessmann, and M. Unser, {\it A fast wavelet-based reconstruction method for magnetic resonance imaging}, IEEE Trans. Med. Imaging, 30 (2011), pp. 1649-1660, .
[25] M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser, {\it Realistic analytical phantoms for parallel magnetic resonance imaging}, IEEE Trans. Med. Imaging, 31 (2012), pp. 626-636.
[26] J. P. Haldar, D. Hernando, and Z.-P. Liang, {\it Compressed-sensing MRI with random encoding}, IEEE Trans. Med. Imaging, 30 (2011), pp. 893-903.
[27] B. A. Hargreaves, D. G. Nishimura, and S. M. Conolly, {\it Time-optimal multidimensional gradient waveform design for rapid imaging}, Magn. Reson. Med., 51 (2004), pp. 81-92, .
[28] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, {\it Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]}, IEEE Trans. Med. Imaging, 10 (1991), pp. 473-478.
[29] J. Keiner, S. Kunis, and D. Potts, {\it Using NFFT 3–a software library for various nonequispaced fast Fourier transforms}, ACM Trans. Math. Software, 36 (2009), 19. · Zbl 1364.65303
[30] T. Knopp, S. Kunis, and D. Potts, {\it A note on the iterative MRI reconstruction from nonuniform \(k\)-space data}, Int. J. Biomed. Imaging, 2007 (2007), 24727, .
[31] F. Krahmer and R. Ward, {\it Stable and robust sampling strategies for compressive imaging}, IEEE Trans. Image Process., 23 (2014), pp. 612-622. · Zbl 1374.94181
[32] C. K. Anand, A. T. Curtis, and R. Kumar, {\it Durga: A heuristically-optimized data collection strategy for volumetric magnetic resonance imaging}, Eng. Optim., 40 (2008), pp. 117-136.
[33] P. C. Lauterbur, {\it Image formation by induced local interactions: examples employing nuclear magnetic resonance}, Nature, 242 (1973), pp. 190-191, .
[34] M. Lustig, D. L. Donoho, and J. M. Pauly, {\it Sparse MRI: The application of compressed sensing for rapid MR imaging}, Magn. Reson. Med., 58 (2007), pp. 1182-1195.
[35] M. Lustig, S. J. Kim, and J. M. Pauly, {\it A fast method for designing time-optimal gradient waveforms for arbitrary \(k\)-space trajectories}, IEEE Trans. Med. Imaging, 27 (2008), pp. 866-873.
[36] M. Lustig, J. H. Lee, D. L. Donoho, and J. M. Pauly, {\it Faster imaging with randomly perturbed, under-sampled spirals and \(ℓ_1\) reconstruction}, in Proceedings of the 13th Annual Meeting of ISMRM, Miami, FL, 2005, p. 685.
[37] S. Ma, W. Yin, Y. Zhang, and A. Chakraborty, {\it An efficient algorithm for compressed MR imaging using total variation and wavelets}, in IEEE Conference on Computer Vision and Pattern Recognition, 2CVPR 2008, IEEE, Washington, DC, 2008, pp. 1-8.
[38] A. A. Maudsley, {\it Dynamic range improvement in NMR imaging using phase scrambling}, J. Magn. Reson., 76 (1988), pp. 287-305.
[39] R. Mir, A. Guesalaga, J. Spiniak, M. Guarini, and P. Irarrazaval, {\it Fast three-dimensional \(k\)-space trajectory design using missile guidance ideas}, Magn. Reson. Med., 52 (2004), pp. 329-336.
[40] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, and M. Lustig, {\it Fast-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime}, IEEE Trans. Med. Imaging, 31 (2012), pp. 1250-1262.
[41] Y. Nesterov, {\it A method of solving a convex programming problem with convergence rate \(\mathcal{O}(1/k^2)\)}, in Soviet Math. Dokl., 27 (1983), pp. 372-376. · Zbl 0535.90071
[42] Y. Nesterov, {\it Gradient methods for minimizing composite functions}, Math. Program., 140 (2013), pp. 125-161, . · Zbl 1287.90067
[43] D. G. Nishimura, P. Irarrazabal, and C. H. Meyer, {\it A velocity \(k\)-space analysis of flow effects in echo-planar and spiral imaging}, Magn. Reson. Med., 33 (1995), pp. 549-556.
[44] J. D. O’sullivan, {\it A fast sinc function gridding algorithm for Fourier inversion in computer tomography}, IEEE Trans. Med. Imaging, 4 (1985), pp. 200-207.
[45] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, P. Boesiger, et al., {\it SENSE: sensitivity encoding for fast MRI}, Magn. Reson. Med., 42 (1999), pp. 952-962.
[46] G. Puy, J. P. Marques, R. Gruetter, J. Thiran, D. Van De Ville, Pierre Vandergheynst, and Yves Wiaux, {\it Spread spectrum magnetic resonance imaging}, IEEE Trans. Med. Imaging, 31 (2012), pp. 586-598.
[47] G. Puy, P. Vandergheynst, R. Gribonval, and Y. Wiaux, {\it Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques}, EURASIP J. Adv. Signal Process., 2012 (2012), pp. 1-13.
[48] G. Puy, P. Vandergheynst, and Y. Wiaux, {\it On variable density compressive sampling}, IEEE Signal Process. Lett., 18 (2011), pp. 595-598.
[49] S. Ravishankar and Y. Bresler, {\it Adaptive sampling design for compressed sensing MRI}, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 3751-3755.
[50] S. Ravishankar and Y. Bresler, {\it MR image reconstruction from highly undersampled \(k\)-space data by dictionary learning}, IEEE Trans. Med. Imaging, 30 (2011), pp. 1028-1041.
[51] B. Roman, A. Hansen, and B. Adcock, {\it On asymptotic structure in compressed sensing}, preprint , 2014.
[52] J. Romberg, {\it Compressive sensing by random convolution}, SIAM J. Imaging Sci., 2 (2009), pp. 1098-1128, . · Zbl 1176.94017
[53] C. Schmaltz, P. Gwosdek, A. Bruhn, and J. Weickert, {\it Electrostatic halftoning}, Computer Graphics Forum, 29 (2010), pp. 2313-2327, .
[54] M. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf, {\it Optimization of \(k\)-space trajectories for compressed sensing by Bayesian experimental design}, Magn. Reson. Med., 63 (2010), pp. 116-126.
[55] S. Smale, {\it Mathematical problems for the next century}, Math. Intell., 20 (1998), pp. 7-15. · Zbl 0947.01011
[56] D. K. Sodickson and W. J. Manning, {\it Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays}, Magn. Reson. Med., 38 (1997), pp. 591-603.
[57] D. M. Spielman, J. M. Pauly, and C. H. Meyer, {\it Magnetic resonance fluoroscopy using spirals with variable sampling densities}, Magn. Reson. Med., 34 (1995), pp. 388-394.
[58] J. Spiniak, A. Guesalaga, R. Mir, M. Guarini, and P. Irarrazaval, {\it Undersampling \(k\)-space using fast progressive 3D trajectories}, Magn. Reson. Med., 54 (2005), pp. 886-892.
[59] T. Teuber, G. Steidl, P. Gwosdek, C. Schmaltz, and J. Weickert, {\it Dithering by differences of convex functions}, SIAM J. Imaging Sci., 4 (2011), pp. 79-108, . · Zbl 1214.49017
[60] D. B. Twieg, {\it The \(k\)-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods}, Med. Phys., 10 (1983), pp. 610-621, .
[61] J. Unnikrishnan and M. Vetterli, {\it Sampling high-dimensional bandlimited fields on low-dimensional manifolds}, IEEE Trans. Inf. Theory, 59 (2013), pp. 2103-2127. · Zbl 1364.94265
[62] S. J. Vannesjo, N. N. Graedel, L. Kasper, S. Gross, J. Busch, M. Haeberlin, C. Barmet, and K. P. Pruessmann, {\it Image reconstruction using a gradient impulse response model for trajectory prediction}, Magn. Reson. Med., 76 (2016), pp. 45-58, .
[63] S. J. Vannesjo, B. J. Wilm, Y. Duerst, S. Gross, D. O. Brunner, B. E. Dietrich, T. Schmid, C. Barmet, and K. P. Pruessmann, {\it Retrospective correction of physiological field fluctuations in high-field brain mri using concurrent field monitoring}, Magn. Reson. Med., 73 (2015), pp. 1833-1843.
[64] S. S. Vasanawala, M. J. Murphy, M. T. Alley, P. Lai, K. Keutzer, J. M. Pauly, and M. Lustig, {\it Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients}, in 2011 IEEE International Symposium on Biomedical Imaging, 2011, pp. 1039-1043, .
[65] S. Winkelmann, T. Schaeffter, T. Koehler, H. Eggers, and O. Doessel, {\it An optimal radial profile order based on the golden ratio for time-resolved MRI}, IEEE Trans. Med. Imaging, 26 (2007), pp. 68-76.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.