D’Agnolo, Andrea; Kashiwara, Masaki Enhanced specialization and microlocalization. (English) Zbl 07309272 Sel. Math., New Ser. 27, No. 1, Paper No. 7, 33 p. (2021). MSC: 32C38 35A27 14F10 PDF BibTeX XML Cite \textit{A. D'Agnolo} and \textit{M. Kashiwara}, Sel. Math., New Ser. 27, No. 1, Paper No. 7, 33 p. (2021; Zbl 07309272) Full Text: DOI
D’Agnolo, Andrea; Kashiwara, Masaki On a topological counterpart of regularization for holonomic \(\mathscr{D}\)-modules. (Sur un analogue topologique de la régularisation pour les \(\mathscr{D}\)-modules holonomes.) (English. French summary) Zbl 07282221 J. Éc. Polytech., Math. 8, 27-55 (2021). MSC: 32C38 14F10 PDF BibTeX XML Cite \textit{A. D'Agnolo} and \textit{M. Kashiwara}, J. Éc. Polytech., Math. 8, 27--55 (2021; Zbl 07282221) Full Text: DOI
D’Agnolo, Andrea; Hien, Marco; Morando, Giovanni; Sabbah, Claude Topological computation of some Stokes phenomena on the affine line. (Calcul topologique de certains phénomènes de Stokes sur la droite affine.) (English. French summary) Zbl 07210770 Ann. Inst. Fourier 70, No. 2, 739-808 (2020). MSC: 14F 34M40 44A10 32C38 PDF BibTeX XML Cite \textit{A. D'Agnolo} et al., Ann. Inst. Fourier 70, No. 2, 739--808 (2020; Zbl 07210770) Full Text: DOI
D’Agnolo, Andrea; Kashiwara, Masaki Riemann-Hilbert correspondence for holonomic \(\mathcal{D}\)-modules. (English) Zbl 1351.32017 Publ. Math., Inst. Hautes Étud. Sci. 123, 69-197 (2016). Reviewer: Aleksandr G. Aleksandrov (Moskva) MSC: 32C38 32S60 34M40 35Q15 35A27 PDF BibTeX XML Cite \textit{A. D'Agnolo} and \textit{M. Kashiwara}, Publ. Math., Inst. Hautes Étud. Sci. 123, 69--197 (2016; Zbl 1351.32017) Full Text: DOI arXiv
Inaba, Michi-Aki; Saito, Masa-Hiko Moduli of unramified irregular singular parabolic connections on a smooth projective curve. (English) Zbl 1267.14015 Kyoto J. Math. 53, No. 2, 433-482 (2013). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D20 34M56 34M55 PDF BibTeX XML Cite \textit{M.-A. Inaba} and \textit{M.-H. Saito}, Kyoto J. Math. 53, No. 2, 433--482 (2013; Zbl 1267.14015) Full Text: DOI Euclid arXiv
Fu, Lei Integrable connections and Galois representations. (English) Zbl 1260.14025 Ji, Lizhen (ed.) et al., Fifth international congress of Chinese mathematicians. Proceedings of the ICCM ’10, Beijing, China, December 17–22, 2010. Part 1. Providence, RI: American Mathematical Society (AMS); Somerville, MA: International Press (ISBN 978-0-8218-7586-5/pbk; 978-0-8218-7555-1/set). AMS/IP Studies in Advanced Mathematics 51, pt.1, 127-137 (2012). Reviewer: Manish Kumar (Bangalore) MSC: 14G32 PDF BibTeX XML Cite \textit{L. Fu}, AMS/IP Stud. Adv. Math. 51, 127--137 (2012; Zbl 1260.14025)