×

Existence of Gevrey approximate solutions for certain systems of linear vector fields applied to involutive systems of first-order nonlinear PDEs. (English) Zbl 1228.35278

The authors consider a \(G^s\)-involutive structure of rank \(n\) in a manifold of dimension \(m+n\). In local coordinates: \[ L_j= \partial/\partial t_j+ \sum^m_{k=1} a_{jk}(x, t)\partial/\partial x_k,\quad j= 1,\dots, n, \] where \(a_{jk}\) belong to the Gevrey space \(G^s\), \(s> 1\), and \([L_i,L_j]= 0\) for \(0\leq i\), \(j\leq n\). A formal solution \(u(x,t)\in G^s\) is constructed for the local Gevrey problem \(u(x,0)= f(x)\in G^s\), \(L_ju= 0\), \(j= 1,\dots, n\). Other interesting results concern the related nonlinear systems: \[ u_{t_j}= F_j(x,t,u,u_x),\quad j= 1,\dots, n, \] for which the authors prove results of propagation of Gevrey wave front sets. For a counterpart of these results in the analytic category see [N. Hanges and F. Treves, Trans. Am. Math. Soc. 331, No. 2, 627–638 (1992; Zbl 0758.35018)].

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators

Citations:

Zbl 0758.35018
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adwan, Z.; Berhanu, S., Edge of the wedge theory in involutive structures, Asian J. Math., 11, 1, 001-018 (2007)
[2] Adwan, Z.; Hoepfner, G., A generalization of Borelʼs theorem and microlocal Gevrey regularity in involutive structures, J. Differential Equations, 245, 10, 2846-2870 (2008) · Zbl 1158.35006
[3] Asano, C. H., On the \(C^\infty\) wave-front set of solutions of first-order nonlinear PDEʼs, Proc. Amer. Math. Soc., 123, 10, 3009-3019 (1995) · Zbl 0848.35024
[4] Barostichi, R. F.; Petronilho, G., Gevrey micro-regularity for solutions to first order nonlinear PDE, J. Differential Equations, 247, 1899-1914 (2009) · Zbl 1180.35024
[5] Berhanu, S., On microlocal analyticity of solutions of first-order nonlinear PDE, Ann. Inst. Fourier, 59, 4, 1267-1290 (2009) · Zbl 1195.35011
[6] Berhanu, S., On involutive systems of first-order nonlinear pdes, (Complex Analysis. Complex Analysis, Trends Math. (2010)), 25-50 · Zbl 1198.35010
[7] Berhanu, S.; Cordaro, P.; Hounie, J., An Introduction to Involutive Structures (2008), Cambridge University Press · Zbl 1151.35011
[8] Bruna, J., An extension of Whitney type for non quasi-analytic classes of functions, J. Lond. Math. Soc., 2, 495-505 (1980) · Zbl 0419.26010
[9] T. Carleman, Léçons sur les fonctions quasi-analytiques, Paris, 1926.; T. Carleman, Léçons sur les fonctions quasi-analytiques, Paris, 1926. · JFM 52.0255.02
[10] Chemin, J. Y., Calcul paradifférentiel précisé et applications à des équations aux derivées partielles non semilinéaires, Duke Math. J., 56, 431-469 (1988) · Zbl 0676.35009
[11] Džanašija, G. A., Carlemanʼs problem for functions of the Gevrey class, Soviet Math. Dokl., 3, 969-972 (1962) · Zbl 0136.04005
[12] Hanges, N.; Treves, F., On the analyticity of solutions of first-order nonlinear PDE, Trans. Amer. Math. Soc., 331, 627-638 (1992) · Zbl 0758.35018
[13] Himonas, A. A., On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Comm. Partial Differential Equations, 11, 1539-1574 (1986) · Zbl 0622.35013
[14] Himonas, A. A., Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J., 59, 265-287 (1989) · Zbl 0719.35019
[15] J.L. Journé, J.M. Trépreau, Hypoellipticité sans sous-ellipticité : le cas des systèmes de \(n(n + 1)\); J.L. Journé, J.M. Trépreau, Hypoellipticité sans sous-ellipticité : le cas des systèmes de \(n(n + 1)\)
[16] Komatsu, H., The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad. Ser. A, 55, 69-72 (1979) · Zbl 0467.26004
[17] Mityagin, B. S., An indefinitely differentiable function with the values of its derivatives given at a point, Soviet Math. Dokl., 2, 594-597 (1961) · Zbl 0132.28802
[18] Rodino, L., Linear Partial Differential Operators in Gevrey Spaces (1993), World Scientific · Zbl 0869.35005
[19] Treves, F., Hypo-Analytic Structures: Local Theory (1992), Princeton University Press · Zbl 0787.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.