Abdulaleem, Najeeb \(V-E\)-invexity in \(E\)-differentiable multiobjective programming. (English) Zbl 07538869 Numer. Algebra Control Optim. 12, No. 2, 427-443 (2022). MSC: 90C26 90C30 90C46 26B25 PDF BibTeX XML Cite \textit{N. Abdulaleem}, Numer. Algebra Control Optim. 12, No. 2, 427--443 (2022; Zbl 07538869) Full Text: DOI OpenURL
Sharma, Nidhi; Singh, Sanjeev Kumar; Mishra, Shashi Kant; Hamdi, Abdelouahed Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. (English) Zbl 07465076 J. Inequal. Appl. 2021, Paper No. 98, 15 p. (2021). MSC: 26A51 26E25 28B20 26A33 26D15 PDF BibTeX XML Cite \textit{N. Sharma} et al., J. Inequal. Appl. 2021, Paper No. 98, 15 p. (2021; Zbl 07465076) Full Text: DOI OpenURL
Das, Prasanta K.; Mishra, Satya N.; Samal, Sapan K. Study of some generalized \(h\)-variational inequality problems in \(H\)-pseudospace. (English) Zbl 1482.49007 Nonlinear Funct. Anal. Appl. 26, No. 3, 475-496 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 49J40 65K10 90C33 47J30 PDF BibTeX XML Cite \textit{P. K. Das} et al., Nonlinear Funct. Anal. Appl. 26, No. 3, 475--496 (2021; Zbl 1482.49007) Full Text: Link OpenURL
Niu, Huan; Gao, Xiaoyan Multiobjective programming and sufficient condition involving \(H - (p, r) - \eta\) invex function. (Chinese. English summary) Zbl 07448406 J. Henan Univ. Sci. Technol., Nat. Sci. 42, No. 6, 84-89 (2021). MSC: 90C29 90C46 PDF BibTeX XML Cite \textit{H. Niu} and \textit{X. Gao}, J. Henan Univ. Sci. Technol., Nat. Sci. 42, No. 6, 84--89 (2021; Zbl 07448406) Full Text: DOI OpenURL
Aslam Noor, Muhammad; Inayat Noor, Khalida Properties of higher order preinvex functions. (English) Zbl 1485.26012 Numer. Algebra Control Optim. 11, No. 3, 431-441 (2021). Reviewer: Ali Morassaei (Zanjan) MSC: 26A51 PDF BibTeX XML Cite \textit{M. Aslam Noor} and \textit{K. Inayat Noor}, Numer. Algebra Control Optim. 11, No. 3, 431--441 (2021; Zbl 1485.26012) Full Text: DOI OpenURL
Saleh, Khairul; Ahmad, Izhar Hardy-Littlewood-Pólya type inequalities for generalized convex functions. (English) Zbl 07404535 Southeast Asian Bull. Math. 45, No. 1, 119-126 (2021). MSC: 26B25 26D07 PDF BibTeX XML Cite \textit{K. Saleh} and \textit{I. Ahmad}, Southeast Asian Bull. Math. 45, No. 1, 119--126 (2021; Zbl 07404535) OpenURL
Deng, Chunyan; Peng, Zaiyun; Chen, Xuejing; Peng, Zhiying \(E\)-preinvex interval-valued function and its application in mathematical programming. (Chinese. English summary) Zbl 07403840 J. Chongqing Norm. Univ., Nat. Sci. 38, No. 1, 30-38 (2021). MSC: 90Cxx 26B25 90C25 PDF BibTeX XML Cite \textit{C. Deng} et al., J. Chongqing Norm. Univ., Nat. Sci. 38, No. 1, 30--38 (2021; Zbl 07403840) Full Text: DOI OpenURL
Abdulaleem, Najeeb Mixed \(E\)-duality for \(E\)-differentiable vector optimization problems under (generalized) \(V\)-\(E\)-invexity. (English) Zbl 1468.90090 SN Oper. Res. Forum 2, No. 3, Paper No. 32, 18 p. (2021). MSC: 90C26 90C30 90C46 PDF BibTeX XML Cite \textit{N. Abdulaleem}, SN Oper. Res. Forum 2, No. 3, Paper No. 32, 18 p. (2021; Zbl 1468.90090) Full Text: DOI OpenURL
Özcan, Serap Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. (English) Zbl 1484.26084 AIMS Math. 5, No. 2, 1505-1518 (2020). MSC: 26D15 26A51 PDF BibTeX XML Cite \textit{S. Özcan}, AIMS Math. 5, No. 2, 1505--1518 (2020; Zbl 1484.26084) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new fractional integral inequalities for generalized-\(m\)-\(((h^p_1,h^q_2)\); \((\eta_1,\eta_2))\)-convex mappings via generalized Mittag-Leffler function. (English) Zbl 07458933 J. Fract. Calc. Appl. 11, No. 2, 75-91 (2020). MSC: 26A51 26A33 26D07 26D10 26D15 33E12 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, J. Fract. Calc. Appl. 11, No. 2, 75--91 (2020; Zbl 07458933) Full Text: Link OpenURL
Ivanov, Vsevolod I. On variational-like inequalities and global minimization problem. (English) Zbl 1471.47040 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 21st international conference on geometry, integrability and quantization, Varna, Bulgaria, June 3–8, 2019. Sofia: Avangard Prima; Sofia: Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering. Geom. Integrability Quantization 21, 149-162 (2020). MSC: 47J20 90C26 47H05 PDF BibTeX XML Cite \textit{V. I. Ivanov}, Geom. Integrability Quantization 21, 149--162 (2020; Zbl 1471.47040) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new fractional integral inequalities for generalized relative semi-\(\mathbf{m}\)-\((r;h_1,h_2)\)-preinvex mappings via generalized Mittag-Leffler function. (English) Zbl 07379447 Arab J. Math. Sci. 26, No. 1-2, 41-55 (2020). MSC: 26D15 26A33 26A51 33E12 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Arab J. Math. Sci. 26, No. 1--2, 41--55 (2020; Zbl 07379447) Full Text: DOI OpenURL
Kashuri, Artion; Awan, Muhammad Uzair; Noor, Muhammad Aslam; Mihai, Marcela V.; Liko, Rozana Some new Hermite-Hadamard type inequalities via \(k\)-fractional integrals pertaining differentiable generalized relative semi-\(\mathbf{m}\)-\((r; h_1, h_2)\)-preinvex mappings and their applications. (English) Zbl 1475.26006 Appl. Math. E-Notes 20, 278-296 (2020). Reviewer: Sanja Varošanec (Zagreb) MSC: 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Appl. Math. E-Notes 20, 278--296 (2020; Zbl 1475.26006) Full Text: Link OpenURL
Debnath, Indira P.; Gupta, Shiv K. The Karush-Kuhn-Tucker conditions for multiple objective fractional interval valued optimization problems. (English) Zbl 1467.90063 RAIRO, Oper. Res. 54, No. 4, 1161-1188 (2020). MSC: 90C29 90C30 90C32 90C46 PDF BibTeX XML Cite \textit{I. P. Debnath} and \textit{S. K. Gupta}, RAIRO, Oper. Res. 54, No. 4, 1161--1188 (2020; Zbl 1467.90063) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for products of two \(MT_{(r;g,m, \varphi)}\)-preinvex functions. (English) Zbl 1458.26012 Proyecciones 39, No. 1, 219-242 (2020). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Proyecciones 39, No. 1, 219--242 (2020; Zbl 1458.26012) Full Text: DOI OpenURL
Cai, Wei; Chai, Chunhong Study on a class of multi-objective programming under generalized convexity. (Chinese. English summary) Zbl 1463.90185 Math. Pract. Theory 50, No. 6, 250-255 (2020). MSC: 90C29 26B25 PDF BibTeX XML Cite \textit{W. Cai} and \textit{C. Chai}, Math. Pract. Theory 50, No. 6, 250--255 (2020; Zbl 1463.90185) OpenURL
Kashuri, Artion; Liko, Rozana; Du, Tingsong Some new Ostrowski type inequalities via Caputo \(k\)-fractional derivatives concerning \((n + 1)\)-differentiable generalized relative semi-\((r; m, p, q, h_1, h_2)\)-preinvex mappings. (English) Zbl 1430.26004 Palest. J. Math. 9, No. 1, 436-455 (2020). MSC: 26D15 26A51 26A33 26D07 26D10 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Palest. J. Math. 9, No. 1, 436--455 (2020; Zbl 1430.26004) Full Text: Link OpenURL
Kashuri, Artion; Liko, Rozana Some Caputo \(k\)-fractional derivatives of Ostrowski type concerning \((n+1)\)-differentiable generalized relative semi-\((r; m; p; q; h_1; h_2)\)-preinvex mappings. (English) Zbl 07539390 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 973-996 (2019). MSC: 26D10 26A33 26A51 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 973--996 (2019; Zbl 07539390) Full Text: DOI OpenURL
Işcan, Imdat; Kadakal, Mahir; Kadakal, Huriye On two times differentiable preinvex and prequasiinvex functions. (English) Zbl 07539388 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 950-963 (2019). MSC: 26A51 26D10 26D15 PDF BibTeX XML Cite \textit{I. Işcan} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 950--963 (2019; Zbl 07539388) Full Text: DOI OpenURL
Özcan, Serap On refinements of some integral inequalities for differentiable prequasiinvex functions. (English) Zbl 07536945 Filomat 33, No. 14, 4377-4385 (2019). MSC: 26D15 26D20 26D07 PDF BibTeX XML Cite \textit{S. Özcan}, Filomat 33, No. 14, 4377--4385 (2019; Zbl 07536945) Full Text: DOI OpenURL
Noor, Muhammad Aslam; Noor, Khalida Inayat New classes of strongly exponentially preinvex functions. (English) Zbl 07510016 AIMS Math. 4, No. 6, 1554-1568 (2019). MSC: 26B25 26D10 PDF BibTeX XML Cite \textit{M. A. Noor} and \textit{K. I. Noor}, AIMS Math. 4, No. 6, 1554--1568 (2019; Zbl 07510016) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Ostrowski type fractional integral operators for generalized \((r;s,m,\varphi)\)-preinvex functions. (English) Zbl 1450.26011 Lib. Math. (N.S.) 39, No. 1, 71-93 (2019). MSC: 26D15 26A33 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Lib. Math. (N.S.) 39, No. 1, 71--93 (2019; Zbl 1450.26011) OpenURL
Li, Ting; Peng, Zaiyun; Shao, Chongyang; Wang, Jingjing The study of \(\alpha\)-semi-preinvexity and its applications. (Chinese. English summary) Zbl 1449.26012 J. Chongqing Norm. Univ., Nat. Sci. 36, No. 6, 1-7 (2019). MSC: 26B25 90C25 90C30 PDF BibTeX XML Cite \textit{T. Li} et al., J. Chongqing Norm. Univ., Nat. Sci. 36, No. 6, 1--7 (2019; Zbl 1449.26012) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Ostrowski type fractional integral inequalities for generalized relative semi-\((r; m, h)\)-preinvex mappings via Caputo \(k\)-fractional derivatives. (English) Zbl 1444.26008 Proyecciones 38, No. 2, 363-394 (2019). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26A51 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Proyecciones 38, No. 2, 363--394 (2019; Zbl 1444.26008) Full Text: DOI OpenURL
Kashuri, Artion; Khan, Muhammad Adil; Liko, Rozana Some new \(k\)-fractional trapezium-like integral inequalities via generalized relative semi-\((r;m,h_1,h_2)\)-preinvex mappings and applications. (English) Zbl 1435.26023 Tbil. Math. J. 12, No. 3, 1-19 (2019). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Tbil. Math. J. 12, No. 3, 1--19 (2019; Zbl 1435.26023) Full Text: DOI Euclid OpenURL
Mishra, S. N.; Das, P. K.; Mishra, S. K. On generalized harmonic vector variational inequalities using \(HC_*\)-condition. (English) Zbl 1449.47099 Nonlinear Funct. Anal. Appl. 24, No. 3, 639-649 (2019). MSC: 47J20 PDF BibTeX XML Cite \textit{S. N. Mishra} et al., Nonlinear Funct. Anal. Appl. 24, No. 3, 639--649 (2019; Zbl 1449.47099) Full Text: Link OpenURL
Kumari, Babli; Jayswal, Anurag Efficiency and duality for vector optimization problem on Riemannian manifolds involving KT-B-invexity. (English) Zbl 1425.90132 Asian-Eur. J. Math. 12, No. 7, Article ID 1950088, 14 p. (2019). MSC: 90C46 90C29 58B20 26B25 PDF BibTeX XML Cite \textit{B. Kumari} and \textit{A. Jayswal}, Asian-Eur. J. Math. 12, No. 7, Article ID 1950088, 14 p. (2019; Zbl 1425.90132) Full Text: DOI OpenURL
Kashuri, Artion; Du, Tingsong; Liko, Rozana On some new integral inequalities concerning twice differentiable generalized relative semi-\((m, h)\)-preinvex mappings. (English) Zbl 1438.26071 Stud. Univ. Babeș-Bolyai, Math. 64, No. 1, 43-61 (2019). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Stud. Univ. Babeș-Bolyai, Math. 64, No. 1, 43--61 (2019; Zbl 1438.26071) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Hermite-Hadamard-Fejér type inequalities via \(k\)-fractional integrals concerning differentiable generalized-\(m\)-\(((h^p_1,h^q_2);(\eta_1,\eta_2))\)-convex mappings. (English) Zbl 1423.26020 Bull. Allahabad Math. Soc. 34, No. 1, 1-24 (2019). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Bull. Allahabad Math. Soc. 34, No. 1, 1--24 (2019; Zbl 1423.26020) OpenURL
Kashuri, Artion; Liko, Rozana; Du, Ting-Song Some new Ostrowski type fractional integral inequalities for beta \((r,g)\)-preinvex functions via Caputo \(k\)-fractional derivatives. (English) Zbl 1426.26025 Mat. Bilt. 43, No. 1, 47-64 (2019). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Mat. Bilt. 43, No. 1, 47--64 (2019; Zbl 1426.26025) Full Text: Link OpenURL
Kuang, Huawu Midpoint convexity and symmetrization problems of sets concerned with generalized convex functions. (Chinese. English summary) Zbl 1438.26027 Math. Pract. Theory 49, No. 4, 185-192 (2019). MSC: 26B25 PDF BibTeX XML Cite \textit{H. Kuang}, Math. Pract. Theory 49, No. 4, 185--192 (2019; Zbl 1438.26027) OpenURL
Wang, Xuefeng; Wang, Ruijie; Gao, Xiaoyan Duality in multiobjective programming under \( (V,\eta)\)-type \(I\) symmetrical invexity. (Chinese. English summary) Zbl 1438.90311 J. Shandong Univ., Nat. Sci. 54, No. 4, 116-126 (2019). MSC: 90C29 90C46 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Shandong Univ., Nat. Sci. 54, No. 4, 116--126 (2019; Zbl 1438.90311) Full Text: DOI OpenURL
Bestuzheva, Ksenia; Hijazi, Hassan Invex optimization revisited. (English) Zbl 1434.90149 J. Glob. Optim. 74, No. 4, 753-782 (2019). MSC: 90C26 90C46 PDF BibTeX XML Cite \textit{K. Bestuzheva} and \textit{H. Hijazi}, J. Glob. Optim. 74, No. 4, 753--782 (2019; Zbl 1434.90149) Full Text: DOI arXiv OpenURL
Niezgoda, Marek Fejér and Hermite-Hadamard type results for \(H\)-invex functions with applications. (English) Zbl 1423.26018 Positivity 23, No. 3, 531-543 (2019). MSC: 26A42 26A51 26D10 26D15 PDF BibTeX XML Cite \textit{M. Niezgoda}, Positivity 23, No. 3, 531--543 (2019; Zbl 1423.26018) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Hermite-Hadamard type inequalities via \(k\)-fractional integrals concerning differentiable generalized-\(m\)-\(((h_1^p,h_2^q);(\eta_1,\eta_2))\)-convex mappings. (English) Zbl 1438.26073 Fract. Differ. Calc. 9, No. 1, 91-108 (2019). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Fract. Differ. Calc. 9, No. 1, 91--108 (2019; Zbl 1438.26073) Full Text: DOI OpenURL
Singh, Deepak; Dar, Bilal Ahmad; Kim, Do Sang Sufficiency and duality in non-smooth interval valued programming problems. (English) Zbl 1438.90336 J. Ind. Manag. Optim. 15, No. 2, 647-665 (2019). MSC: 90C30 90C46 49N15 PDF BibTeX XML Cite \textit{D. Singh} et al., J. Ind. Manag. Optim. 15, No. 2, 647--665 (2019; Zbl 1438.90336) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana On some \(k\)-fractional integral inequalities of Hermite-Hadamard type for twice differentiable generalized beta \((r,g)\)-preinvex functions. (English) Zbl 1414.26017 J. Appl. Anal. 25, No. 1, 59-72 (2019). MSC: 26A33 26A51 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, J. Appl. Anal. 25, No. 1, 59--72 (2019; Zbl 1414.26017) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some different type integral inequalities pertaining generalized relative semi-\(\mathbf m\)-\((r;h_1,h_2)\)-preinvex mappings and their applications. (English) Zbl 1396.26034 Electron. J. Math. Anal. Appl. 7, No. 1, 351-373 (2019). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Electron. J. Math. Anal. Appl. 7, No. 1, 351--373 (2019; Zbl 1396.26034) OpenURL
Kashuri, Artion; Liko, Rozana; Khan, Muhammad Adil; Chu, Yu-Ming Some new Ostrowski type fractional integral inequalities for generalized \((r,s,m,\varphi)\)-preinvex functions via Caputo \(k\)-fractional derivatives. (English) Zbl 07449794 J. Fract. Calc. Appl. 9, No. 2, 163-177 (2018). MSC: 26D15 26A33 26A51 26D07 26D10 PDF BibTeX XML Cite \textit{A. Kashuri} et al., J. Fract. Calc. Appl. 9, No. 2, 163--177 (2018; Zbl 07449794) Full Text: Link OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for twice differentiable generalized beta-preinvex functions. (English) Zbl 07449781 J. Fract. Calc. Appl. 9, No. 1, 241-252 (2018). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, J. Fract. Calc. Appl. 9, No. 1, 241--252 (2018; Zbl 07449781) Full Text: Link OpenURL
Kassem, Mohamed Abd El-Hady; El-Hadidy, Mohamed Abd Allah On duality of fuzzy multiobjective optimisation problems: application to a multiplicative search technique. (English) Zbl 1452.90288 Int. J. Math. Oper. Res. 12, No. 3, 364-377 (2018). MSC: 90C29 90C46 90C70 PDF BibTeX XML Cite \textit{M. A. E. H. Kassem} and \textit{M. A. A. El-Hadidy}, Int. J. Math. Oper. Res. 12, No. 3, 364--377 (2018; Zbl 1452.90288) Full Text: DOI OpenURL
Luca, Ionut Traian; Duca, Dorel I. Approximations of objective functions and constraints in bi-criteria optimization problems. (English) Zbl 1463.90193 J. Numer. Anal. Approx. Theory 47, No. 2, 167-176 (2018). MSC: 90C29 90C46 90C59 PDF BibTeX XML Cite \textit{I. T. Luca} and \textit{D. I. Duca}, J. Numer. Anal. Approx. Theory 47, No. 2, 167--176 (2018; Zbl 1463.90193) OpenURL
Kashuri, Artion; Liko, Rozana Some new Ostrowski type fractional integral inequalities for generalized \((s,m, \phi)\)-preinvex functions via Caputo \(k\)-fractional derivatives. (English) Zbl 1442.26014 Proyecciones 37, No. 1, 133-151 (2018). MSC: 26A51 26A33 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Proyecciones 37, No. 1, 133--151 (2018; Zbl 1442.26014) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Ostrowski type fractional integral inequalities for generalized relative semi-\((m,h)\)-preinvex functions via Caputo \(k\)-fractional derivatives. (English) Zbl 1438.26076 An. Univ. Oradea, Fasc. Mat. 25, No. 2, 5-21 (2018). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, An. Univ. Oradea, Fasc. Mat. 25, No. 2, 5--21 (2018; Zbl 1438.26076) OpenURL
Huang, Yingquan; Tang, Liping D-E-properly semi-prequasi-invex mappings and vector optimization. (Chinese. English summary) Zbl 1438.90301 J. Syst. Sci. Math. Sci. 38, No. 11, 1317-1327 (2018). MSC: 90C29 PDF BibTeX XML Cite \textit{Y. Huang} and \textit{L. Tang}, J. Syst. Sci. Math. Sci. 38, No. 11, 1317--1327 (2018; Zbl 1438.90301) OpenURL
Gong, Zengtai; Gao, Han Preinvexity of \(n\)-dimensional fuzzy number-valued functions. (Chinese. English summary) Zbl 1438.26025 J. Shandong Univ., Nat. Sci. 53, No. 10, 72-81 (2018). MSC: 26B25 26E50 PDF BibTeX XML Cite \textit{Z. Gong} and \textit{H. Gao}, J. Shandong Univ., Nat. Sci. 53, No. 10, 72--81 (2018; Zbl 1438.26025) Full Text: DOI OpenURL
Luca, Traian Ionuc t; Duca, Dorel I. Approximations of bi-criteria optimization problem. (English) Zbl 1438.90381 Stud. Univ. Babeș-Bolyai, Math. 63, No. 4, 549-559 (2018). MSC: 90C46 90C59 PDF BibTeX XML Cite \textit{T. I. t Luca} and \textit{D. I. Duca}, Stud. Univ. Babeș-Bolyai, Math. 63, No. 4, 549--559 (2018; Zbl 1438.90381) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Ostrowski type fractional integral operators for generalized \((r; g, s, m, \varphi)\)-preinvex functions. (English) Zbl 1438.26075 Stud. Univ. Babeș-Bolyai, Math. 63, No. 1, 155-173 (2018). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Stud. Univ. Babeș-Bolyai, Math. 63, No. 1, 155--173 (2018; Zbl 1438.26075) Full Text: DOI OpenURL
Das, A. K.; Jana, R.; Deepmala Invex programming problems with equality and inequality constraints. (English) Zbl 1419.90083 Trans. A. Razmadze Math. Inst. 172, No. 3, Part A, 361-371 (2018). MSC: 90C25 PDF BibTeX XML Cite \textit{A. K. Das} et al., Trans. A. Razmadze Math. Inst. 172, No. 3, Part A, 361--371 (2018; Zbl 1419.90083) Full Text: DOI OpenURL
Liu, Hongbo; Long, Qiang; Li, Yi Approximation of solutions to a general system of variational inclusions in Banach spaces and applications. (English) Zbl 1438.47102 J. Nonlinear Sci. Appl. 11, No. 5, 644-657 (2018). MSC: 47J22 47J25 47H06 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Nonlinear Sci. Appl. 11, No. 5, 644--657 (2018; Zbl 1438.47102) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Hermite-Hadamard type fractional integral inequalities to products of two generalized \((r;g,s,m,\varphi)\)-preinvex functions. (English) Zbl 1416.26021 Mat. Bilt. 42, No. 1, 75-92 (2018). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Mat. Bilt. 42, No. 1, 75--92 (2018; Zbl 1416.26021) Full Text: Link OpenURL
Zhao, Jie The improved Mond-Weir duality for a class of nondifferentiable multiobjective programming. (Chinese. English summary) Zbl 1424.90254 J. Chongqing Norm. Univ., Nat. Sci. 35, No. 4, 21-24 (2018). MSC: 90C29 90C46 PDF BibTeX XML Cite \textit{J. Zhao}, J. Chongqing Norm. Univ., Nat. Sci. 35, No. 4, 21--24 (2018; Zbl 1424.90254) Full Text: DOI OpenURL
Yang, Yuhong Some criteria for \(D\)-semi-preinvex mappings. (Chinese. English summary) Zbl 1424.26029 J. Chongqing Norm. Univ., Nat. Sci. 35, No. 3, 21-29 (2018). MSC: 26B25 90C25 PDF BibTeX XML Cite \textit{Y. Yang}, J. Chongqing Norm. Univ., Nat. Sci. 35, No. 3, 21--29 (2018; Zbl 1424.26029) Full Text: DOI OpenURL
Jayswal, Anurag; Antczak, Tadeusz; Jha, Shalini Modified objective function approach for multitime variational problems. (English) Zbl 1424.49006 Turk. J. Math. 42, No. 3, 1111-1129 (2018). MSC: 49J20 65K10 93C35 PDF BibTeX XML Cite \textit{A. Jayswal} et al., Turk. J. Math. 42, No. 3, 1111--1129 (2018; Zbl 1424.49006) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana; Du, Tingsong Ostrowski type fractional integral operators for generalized beta \((r,g)\)-preinvex functions. (English) Zbl 1412.26016 Khayyam J. Math. 4, No. 1, 39-58 (2018). MSC: 26A51 26A33 26D07 26D10 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Khayyam J. Math. 4, No. 1, 39--58 (2018; Zbl 1412.26016) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana; Dragomir, Silvestru Sever Some new Hermite-Hadamard type inequalities via Caputo \(k\)-fractional derivatives concerning \((n+1)\)-differentiable generalized relative semi-\((r,m,h_1,h_2)\)-preinvex mappings. (English) Zbl 1424.26021 Fract. Differ. Calc. 8, No. 2, 337-355 (2018). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Fract. Differ. Calc. 8, No. 2, 337--355 (2018; Zbl 1424.26021) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana; Dragomir, Silvestru Sever Some new Gauss-Jacobi and Hermite-Hadamard type inequalities concerning \((n+1)\)-differentiable generalized \(((h_1, h_2); ({\eta}_1 {\eta}_2))\)-convex mappings. (English) Zbl 1415.26004 Tamkang J. Math. 49, No. 4, 317-337 (2018). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Tamkang J. Math. 49, No. 4, 317--337 (2018; Zbl 1415.26004) Full Text: DOI OpenURL
Hwang, Dah-Yan; Dragomir, Silvestru Sever Inequalities for the weighted mean of \(r\)-preinvex functions on an invex set. (English) Zbl 1406.26013 J. Math. Inequal. 12, No. 4, 1097-1106 (2018). MSC: 26D15 90C25 PDF BibTeX XML Cite \textit{D.-Y. Hwang} and \textit{S. S. Dragomir}, J. Math. Inequal. 12, No. 4, 1097--1106 (2018; Zbl 1406.26013) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type inequalities for generalized \((s, m, \varphi)\)-preinvex Godunova-Levin functions. (English) Zbl 1405.26010 Rad Hrvat. Akad. Znan. Umjet. 534, Mat. Znan. 22, 63-75 (2018). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 534(22), 63--75 (2018; Zbl 1405.26010) Full Text: DOI OpenURL
Kumari, Babli; Jayswal, Anurag Some properties of geodesic \(E\)-preinvex function and geodesic semi \(E\)-preinvex function on Riemannian manifolds. (English) Zbl 06995749 Opsearch 55, No. 3-4, 807-822 (2018). MSC: 90Bxx PDF BibTeX XML Cite \textit{B. Kumari} and \textit{A. Jayswal}, Opsearch 55, No. 3--4, 807--822 (2018; Zbl 06995749) Full Text: DOI OpenURL
Porwal, Sandeep Kumar Geodesic semi \(E\)-preinvex functions on Riemannian manifolds. (English) Zbl 1401.26027 J. Appl. Math. Inform. 36, No. 5-6, 521-530 (2018). MSC: 26B25 53B21 90C30 PDF BibTeX XML Cite \textit{S. K. Porwal}, J. Appl. Math. Inform. 36, No. 5--6, 521--530 (2018; Zbl 1401.26027) Full Text: DOI OpenURL
Latif, Muhammad Amer; Dragomir, Sever Silvestru; Momoniat, Ebrahim Some weighted integral inequalities for differentiable \(h\)-preinvex functions. (English) Zbl 1400.26055 Georgian Math. J. 25, No. 3, 441-450 (2018). MSC: 26D15 26D07 26D20 PDF BibTeX XML Cite \textit{M. A. Latif} et al., Georgian Math. J. 25, No. 3, 441--450 (2018; Zbl 1400.26055) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana; Khan, Muhammad Adil Conformable fractional integral inequalities of Hermite-Hadamard type for twice differentiable generalized beta \((r, g)\)-preinvex functions. (English) Zbl 1400.26051 Bull. Allahabad Math. Soc. 33, No. 1, 65-95 (2018). MSC: 26D15 26A33 26A51 26D07 26D10 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Bull. Allahabad Math. Soc. 33, No. 1, 65--95 (2018; Zbl 1400.26051) OpenURL
Kashuri, Artion; Liko, Rozana Some new Hermite-Hadamard type inequalities via \(k\)-fractional integrals concerning differentiable generalized relative semi-\((r;m,p,q,h_1,h_2)\)-preinvex mappings. (English) Zbl 1395.26002 Fasc. Math. 60, 59-78 (2018). MSC: 26D10 26D15 26A51 26A33 26D07 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Fasc. Math. 60, 59--78 (2018; Zbl 1395.26002) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type inequalities for generalized \((s,m,\varphi)\)-preinvex Godunova-Levin functions. (English) Zbl 1396.26033 Ital. J. Pure Appl. Math. 39, 683-700 (2018). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Ital. J. Pure Appl. Math. 39, 683--700 (2018; Zbl 1396.26033) Full Text: Link OpenURL
Mishra, S. N.; Das, P. K.; Nayak, G. C. Harmonic invex sets and generalized harmonic variational inequality problems. (English) Zbl 1391.26035 Nonlinear Funct. Anal. Appl. 23, No. 1, 49-61 (2018). MSC: 26A51 26B25 26D15 52A41 PDF BibTeX XML Cite \textit{S. N. Mishra} et al., Nonlinear Funct. Anal. Appl. 23, No. 1, 49--61 (2018; Zbl 1391.26035) OpenURL
Antczak, Tadeusz Vector exponential penalty function method for nondifferentiable multiobjective programming problems. (English) Zbl 1388.49034 Bull. Malays. Math. Sci. Soc. (2) 41, No. 2, 657-686 (2018). MSC: 49M37 90C29 90C30 90C26 PDF BibTeX XML Cite \textit{T. Antczak}, Bull. Malays. Math. Sci. Soc. (2) 41, No. 2, 657--686 (2018; Zbl 1388.49034) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some different type integral inequalities concerning twice differentiable generalized relative semi-\((r; m, h)\)-preinvex mappings. (English) Zbl 1384.26053 Tbil. Math. J. 11, No. 1, 79-97 (2018). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Tbil. Math. J. 11, No. 1, 79--97 (2018; Zbl 1384.26053) Full Text: DOI OpenURL
Ramosaçaj, Miftar; Kashuri, Artion; Liko, Rozana Some new Hermite-Hadamard-Fejér type inequlaties via \(k\)-fractional integrals concerning differentiable generalized relative semi-\((r; m, h_1, h_2)\)-preinvex mappings. (English) Zbl 1390.26018 Eur. J. Pure Appl. Math. 11, No. 1, 51-68 (2018). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{M. Ramosaçaj} et al., Eur. J. Pure Appl. Math. 11, No. 1, 51--68 (2018; Zbl 1390.26018) Full Text: Link OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for \(\mathrm{MT}_{(g,m,\varphi)}\)-preinvex functions. (English) Zbl 1375.26039 Palest. J. Math. 7, No. 1, 307-321 (2018). MSC: 26D15 26A51 26A33 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Palest. J. Math. 7, No. 1, 307--321 (2018; Zbl 1375.26039) Full Text: Link OpenURL
Niezgoda, Marek Inequalities for \(H\)-invex functions with applications for uniformly convex and superquadratic functions. (English) Zbl 07453935 Filomat 31, No. 15, 4781-4794 (2017). MSC: 49J21 49K27 26B25 26D15 PDF BibTeX XML Cite \textit{M. Niezgoda}, Filomat 31, No. 15, 4781--4794 (2017; Zbl 07453935) Full Text: DOI OpenURL
Antczak, Tadeusz Saddle point criteria in semi-infinite minimax fractional programming under \((\Phi,\rho)\)-invexity. (English) Zbl 07410853 Filomat 31, No. 9, 2557-2574 (2017). MSC: 90C32 90C34 90C47 90C26 90C30 PDF BibTeX XML Cite \textit{T. Antczak}, Filomat 31, No. 9, 2557--2574 (2017; Zbl 07410853) Full Text: DOI OpenURL
Pankaj; Joshi, Bhuwan Chandra Higher order duality in multiobjective fractional programming problem with generalized convexity. (English) Zbl 1474.90465 Yugosl. J. Oper. Res. 27, No. 2, 249-264 (2017). MSC: 90C32 90C26 90C29 90C46 65F10 PDF BibTeX XML Cite \textit{Pankaj} and \textit{B. C. Joshi}, Yugosl. J. Oper. Res. 27, No. 2, 249--264 (2017; Zbl 1474.90465) Full Text: DOI OpenURL
Karimi, Kourosh; Sadeghieh, Ali A new constraint qualification for vector semi-infinite problem. (English) Zbl 1474.90492 J. Math. Ext. 11, No. 4, 83-93 (2017). MSC: 90C34 90C46 49J52 PDF BibTeX XML Cite \textit{K. Karimi} and \textit{A. Sadeghieh}, J. Math. Ext. 11, No. 4, 83--93 (2017; Zbl 1474.90492) Full Text: Link OpenURL
Latif, Muhammad Amer Erratum to: “More results on Hermite-Hadamard type inequalities through \((\alpha,m)\)-preinvexity”. (English) Zbl 1473.26026 J. Appl. Anal. Comput. 7, No. 4, 1478-1487 (2017). MSC: 26D15 26D20 26D07 PDF BibTeX XML Cite \textit{M. A. Latif}, J. Appl. Anal. Comput. 7, No. 4, 1478--1487 (2017; Zbl 1473.26026) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for \(\mathrm{MT}_{(m,\varphi)}\)-preinvex functions. (English) Zbl 1438.26074 Stud. Univ. Babeș-Bolyai, Math. 62, No. 4, 439-450 (2017). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Stud. Univ. Babeș-Bolyai, Math. 62, No. 4, 439--450 (2017; Zbl 1438.26074) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Ostrowski type inequalities for generalized \((s,m,\varphi)\)-preinvex functions via fractional integral operators. (English) Zbl 1416.26020 Mat. Bilt. 41, No. 2, 74-91 (2017). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Mat. Bilt. 41, No. 2, 74--91 (2017; Zbl 1416.26020) Full Text: Link OpenURL
Guo, Changhong; Fang, Shaomei Global existence and attractors for the two-dimensional Burgers-Ginzburg-Landau equations. (English) Zbl 1412.35064 J. Nonlinear Sci. Appl. 10, No. 6, 3123-3135 (2017). MSC: 35D35 35B41 35Q56 PDF BibTeX XML Cite \textit{C. Guo} and \textit{S. Fang}, J. Nonlinear Sci. Appl. 10, No. 6, 3123--3135 (2017; Zbl 1412.35064) Full Text: DOI OpenURL
Kang, Xiaorong; Feng, Wenqiang; Cheng, Kelong; Guo, Chunxiang An efficient finite difference scheme for the 2D sine-Gordon equation. (English) Zbl 1412.65080 J. Nonlinear Sci. Appl. 10, No. 6, 2998-3012 (2017). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{X. Kang} et al., J. Nonlinear Sci. Appl. 10, No. 6, 2998--3012 (2017; Zbl 1412.65080) Full Text: DOI arXiv OpenURL
Li, Ru; Yu, Guolin; Liu, Wei; Liu, Sanyang A class of generalized invex functions and vector variational inequalities. (Chinese. English summary) Zbl 1399.90271 Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 6, 1029-1039 (2017). MSC: 90C33 26B25 90C25 90C29 PDF BibTeX XML Cite \textit{R. Li} et al., Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 6, 1029--1039 (2017; Zbl 1399.90271) OpenURL
Zhao, Jie Mond-Weir duality for a class of nondifferentiable multiobjective programming. (Chinese. English summary) Zbl 1399.90252 J. Chongqing Norm. Univ., Nat. Sci. 34, No. 3, 1-5 (2017). MSC: 90C29 90C46 PDF BibTeX XML Cite \textit{J. Zhao}, J. Chongqing Norm. Univ., Nat. Sci. 34, No. 3, 1--5 (2017; Zbl 1399.90252) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for generalized beta \((r,g)\)-preinvex functions. (English) Zbl 1390.26017 Proyecciones 36, No. 4, 711-726 (2017). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Proyecciones 36, No. 4, 711--726 (2017; Zbl 1390.26017) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Uncertain fuzzy Ostrowski type inequalities for the generalized \((s,m)\)-preinvex Godunova-Levin functions of second kind. (English) Zbl 1388.26015 Acta Comment. Univ. Tartu. Math. 21, No. 2, 225-238 (2017). MSC: 26D15 26E50 33B15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Acta Comment. Univ. Tartu. Math. 21, No. 2, 225--238 (2017; Zbl 1388.26015) Full Text: DOI OpenURL
Hussain, Sabir; Rafeeq, Sobia Some new Hermite-Hadamard type integral inequalities for functions whose \(n\)th derivatives are logarithmically relative \(h\)-preinvex. (English) Zbl 1413.26044 Miskolc Math. Notes 18, No. 2, 837-849 (2017). MSC: 26D15 26A51 33B15 33B20 PDF BibTeX XML Cite \textit{S. Hussain} and \textit{S. Rafeeq}, Miskolc Math. Notes 18, No. 2, 837--849 (2017; Zbl 1413.26044) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for twice differentiable generalized \((s,m,\varphi)\)-preinvex functions. (English) Zbl 1387.26024 Konuralp J. Math. 5, No. 2, 228-238 (2017). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Konuralp J. Math. 5, No. 2, 228--238 (2017; Zbl 1387.26024) OpenURL
Kashuri, Artion; Liko, Rozana Generalizations of Hermite-Hadamard and Ostrowski type inequalities for \(\mathrm{MT}_m\)-preinvex functions. (English) Zbl 1382.26022 Proyecciones 36, No. 1, 45-80 (2017). MSC: 26D15 26A33 26A51 33B15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Proyecciones 36, No. 1, 45--80 (2017; Zbl 1382.26022) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Some new Ostrowski type fractional integral inequalities for generalized \((r;g,s,m,\varphi)\)-preinvex functions via Caputo \(k\)-fractional derivatives. (English) Zbl 1387.26023 Int. J. Nonlinear Anal. Appl. 8, No. 2, 109-124 (2017). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Int. J. Nonlinear Anal. Appl. 8, No. 2, 109--124 (2017; Zbl 1387.26023) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type fractional integral inequalities for generalized \((r; g, s, m, \varphi)\)-preinvex functions. (English) Zbl 1378.26008 Fasc. Math. 59, 43-55 (2017). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Fasc. Math. 59, 43--55 (2017; Zbl 1378.26008) Full Text: DOI OpenURL
Kashuri, A.; Liko, R. Ostrowski type fractional integral operators for generalized \((r;s,m,\varphi)\)-preinvex functions. (English) Zbl 1386.26005 Appl. Appl. Math. 12, No. 2, 1017-1035 (2017). MSC: 26A33 26A51 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Appl. Appl. Math. 12, No. 2, 1017--1035 (2017; Zbl 1386.26005) Full Text: Link OpenURL
Kashuri, Artion; Liko, Rozana Ostrowski type fractional integral inequalities for generalized (\(g, s, m, \varphi\))-preinvex functions. (English) Zbl 1379.26022 Extr. Math. 32, No. 1, 105-123 (2017). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Extr. Math. 32, No. 1, 105--123 (2017; Zbl 1379.26022) OpenURL
Nahak, C.; Behera, N.; Nanda, S. Optimality conditions and duality results in Banach space under \(\rho -(\eta, \theta)\)-\(B\)-invexity. (English) Zbl 1375.90311 Opsearch 54, No. 1, 107-121 (2017). MSC: 90C46 90C48 90C26 PDF BibTeX XML Cite \textit{C. Nahak} et al., Opsearch 54, No. 1, 107--121 (2017; Zbl 1375.90311) Full Text: DOI OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type inequalities for generalized \((s,m,\varphi)\)-preinvex functions via \(k\)-fractional integrals. (English) Zbl 1375.26023 Tbil. Math. J. 10, No. 4, 73-82 (2017). MSC: 26A51 26A33 26D07 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Tbil. Math. J. 10, No. 4, 73--82 (2017; Zbl 1375.26023) Full Text: DOI OpenURL
Kim, Moon Hee; Kim, Gwi Soo On sufficiency and duality for robust optimization problems involving \((V, \rho)\)-invex functions. (English) Zbl 1373.90105 East Asian Math. J. 33, No. 3, 265-269 (2017). MSC: 90C25 90C30 90C46 PDF BibTeX XML Cite \textit{M. H. Kim} and \textit{G. S. Kim}, East Asian Math. J. 33, No. 3, 265--269 (2017; Zbl 1373.90105) Full Text: DOI OpenURL
Li, Keke; Peng, Zaiyun; Liu, Yawei; Tang, Liping Notes on characterizations and applications of semi-prequasi-invexity. (English) Zbl 1389.90307 J. Chongqing Norm. Univ., Nat. Sci. 34, No. 1, 12-22 (2017). MSC: 90C30 26B25 90C29 90C46 PDF BibTeX XML Cite \textit{K. Li} et al., J. Chongqing Norm. Univ., Nat. Sci. 34, No. 1, 12--22 (2017; Zbl 1389.90307) Full Text: DOI OpenURL
Mishra, Satya Narayan; Das, Prasanta Kumar; Nayak, Girish Chandra Generalized vector \(B\)-variational inequality problems. (English) Zbl 1375.90284 Nonlinear Funct. Anal. Appl. 22, No. 2, 323-334 (2017). MSC: 90C30 65K10 49J40 PDF BibTeX XML Cite \textit{S. N. Mishra} et al., Nonlinear Funct. Anal. Appl. 22, No. 2, 323--334 (2017; Zbl 1375.90284) OpenURL
Verma, Ram U.; Zalmai, G. J. Higher-order parameter-free sufficient optimality conditions in discrete minmax fractional programming. (English) Zbl 1371.90113 Tbil. Math. J. 10, No. 2, 211-233 (2017). MSC: 90C26 90C30 90C32 90C46 90C47 PDF BibTeX XML Cite \textit{R. U. Verma} and \textit{G. J. Zalmai}, Tbil. Math. J. 10, No. 2, 211--233 (2017; Zbl 1371.90113) Full Text: DOI OpenURL
Chuong, Thai Doan; Kim, Do Sang Nondifferentiable minimax programming problems with applications. (English) Zbl 1370.90289 Ann. Oper. Res. 251, No. 1-2, 73-87 (2017). MSC: 90C47 90C46 49K99 65K10 90C29 PDF BibTeX XML Cite \textit{T. D. Chuong} and \textit{D. S. Kim}, Ann. Oper. Res. 251, No. 1--2, 73--87 (2017; Zbl 1370.90289) Full Text: DOI OpenURL
Antczak, T. On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems. (English) Zbl 1370.90185 Comput. Appl. Math. 36, No. 3, 1299-1314 (2017). MSC: 90C26 90C30 90C46 26B25 PDF BibTeX XML Cite \textit{T. Antczak}, Comput. Appl. Math. 36, No. 3, 1299--1314 (2017; Zbl 1370.90185) Full Text: DOI OpenURL
Fundo, Akli; Kashuri, Artion; Ramosaco, Miftar; Liko, Rozana Some new Hermite-Hadamard type conformable fractional integral inequalities for twice differentiable \(\mathrm{MT}_{(r;g,m,\varphi)}\)-preinvex functions. (English) Zbl 1370.26040 Eur. J. Pure Appl. Math. 10, No. 4, 809-834 (2017). MSC: 26D15 26D10 26D07 26A51 26A33 PDF BibTeX XML Cite \textit{A. Fundo} et al., Eur. J. Pure Appl. Math. 10, No. 4, 809--834 (2017; Zbl 1370.26040) Full Text: Link OpenURL
Kashuri, Artion; Liko, Rozana Hermite-Hadamard type inequalities for \(MT_m\)-preinvex functions. (English) Zbl 1369.26002 Fasc. Math. 58, 77-96 (2017). MSC: 26D15 26A33 26A51 33B15 26B25 26D07 26D10 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Fasc. Math. 58, 77--96 (2017; Zbl 1369.26002) Full Text: DOI OpenURL