×

Mathematical modeling of jet interaction with a high-enthalpy flow in an expanding channel. (English. Russian original) Zbl 1298.76106

J. Appl. Mech. Tech. Phys. 54, No. 2, 195-206 (2013); translation from Prikl. Mekh. Tekh. Fiz. 54, No. 2, 32-45 (2013).
Summary: Results of modeling the interaction of a plane supersonic jet with a supersonic turbulent high-enthalpy flow in a channel are reported. The problem is solved in a two-dimensional formulation at external flow Mach numbers \(\mathrm M_\infty=2.6\) and 2.8 and at high values of the total temperature of the flow \(T_0=1800-2000\) K. The mathematical model includes full averaged Navier-Stokes equations supplemented with a two-equation turbulence model and an equation that describes the transportation of the injected substance. The computations are performed by using the ANSYS Fluent 12.1 software package. Verification of the computational technique is performed against available experimental results on transverse injection of nitrogen and helium jets. The computed and experimental results are demonstrated to agree well. For the examined problems, in addition to surface distributions of characteristics, fields of flow parameters are obtained, which allow one to reproduce specific features that can be hardly captured in experiments. Parametric studies show that an increase in the angle of inclination and the mass flow rate of the jet leads to an increase in the depth of jet penetration into the flow, but more intense separated flows and shock waves are observed in this case.

MSC:

76J20 Supersonic flows
76F25 Turbulent transport, mixing
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

ANSYS; AUSM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. A. Schetz, P. F. Hawkins, and H. Lehman, ”Structure of Highly Underexpanded Transverse Jets in a Supersonic Stream,” AIAA J., No. 5, 882–884 (1967).
[2] V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Exhaustion Processes (Nauka, Novosibirsk, 1984) [in Russian].
[3] V. Viti, R. Neel, and J. A. Schetz, ”Detailed Flow Physics of the Supersonic Jet Interaction Flow Field,” Phys. Fluids 21, 046101 (2009). · Zbl 1183.76548 · doi:10.1063/1.3112736
[4] E. E. Zukoski and F. W. Spaid, ”Secondary Injection of Gases into a Supersonic Flow,” AIAA J. 2(10), 1689–1696 (1964). · doi:10.2514/3.2653
[5] V. S. Avduevskii, K. I. Medvedev, and M. N. Polyanskii, ”Interaction of a Supersonic Flow with a Transverse Jet Injected through a Circular Orifice in a Flat Plate,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 193–197 (1970).
[6] V. V. Eremin, Yu. M. Lipnitskii, A. N. Pokrovskii, et al., ”Investigation of Interaction of a Plane Transverse Gas Jet with a Supersonic Flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 103–110 (1975).
[7] F. S. Billing, R. S. Orth, and M. Lasky, ”A Unified Analysis of Gaseous Jet Penetration,” AIAA J. 9(6), 1048–1058 (1971). · doi:10.2514/3.49916
[8] N. E. Hawk and J. L. Amick, ”Two-Dimensional Secondary Jet Interaction with a Supersonic Stream,” AIAA J. 5(4), 655–660 (1967). · doi:10.2514/3.4044
[9] A. I. Glagolev, A. I. Zubkov, and Yu. A. Panov, ”Interaction of a Gas Jet Escaping from an orifice in a Flat Plate with a Supersonic Flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 99–103 (1968).
[10] M. R. Gruber, A. S. Nejad, T. H. Chen, and J. C. Dutton, ”Mixing and Penetration Studies of Sonic Jets in a Mach 2 Freestream,” AIAA Paper No. 1994-709 (1994).
[11] J. R. Sterrett, J. B. Burber, D.W. Alston, and D. J. Romeo, ”Experimental Investigation of Secondary Jets from Two-Dimensional Nozzles with Various Exit Mach Numbers for Hypersonic Control Application,” Tech. Note NASA No. D-3795, Washington (1967).
[12] W. J. Thayer and R. C. Corlett, ”Gas Dynamic and Transport Phenomena in the Two-Dimensional Jet Interaction Flowfield,” AIAA J. 10(4), 488–493 (1972). · doi:10.2514/3.50124
[13] R. Portz and C. Segal, ”Penetration of Gaseous Jets in Supersonic Flows,” AIAA J. 44(10), 2426–2429 (2006). · doi:10.2514/1.23541
[14] R. J. Goldstein, G. Shavit, and T. S. Chen, ”Film-Cooling Effectiveness with Injection through a Porous Section,” J. Heat Transfer 87, 353–361 (1965). · doi:10.1115/1.3689114
[15] V. I. Penzin, ”Experimental Study of Transverse Injection into a Supersonic Flow in a Channel,” Uch. Zap. TsAGI 4(6), 112–118 (1973).
[16] V. Ya. Borovoy and M. V. Ryzhkova, ”Gas Flow and Heat Transfer on a Cone near a Transverse Jet with a Laminar State of the Boundary Layer,” Uch. Zap. TsAGI 5(4), 48–58 (1974).
[17] A. Ya. Nadyrshin and Z. G. Shaihutdinov, ”Mixing of a Supersonic Flow with a Transverse Jet Injected through a Circular Orifice in a Flat Plate,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 14–18 (1975).
[18] M. R. Gruber, A. S. Nejad, T. H. Chen, and J. C. Dutton, ”Large Structure Convection Velocity Measurements in Compressible Transverse Injection Flowfields,” Exp. Fluids 22, 397–407 (1997). · doi:10.1007/s003480050066
[19] W. M. Van Lerberghe, J. G. Santiago, J. C. Dutton, and R. P. Lucht, ”Mixing of a Sonic Transverse Jet Injected into a Supersonic Flow,” AIAA J. 38(3), 470–479 (2000). · doi:10.2514/2.984
[20] J. P. Drummond, ”Numerical Solution for Perpendicual Sonic Hydrogen Injection into a Ducted Supersonic Airstream,” AIAA J. 17(5), 531–533 (1979). · Zbl 0397.76055 · doi:10.2514/3.61168
[21] F. Grasso and V. Magi, ”Simulation of Transverse Gas Injection in Turbulent Supersonic Air Flows,” AIAA J. 33(1), 56–62 (1995). · Zbl 0825.76588 · doi:10.2514/3.12332
[22] V. K. Baev, V. I. Golovichev, and P. K. Tret’yakov, ”Combustion in a Supersonic Flow,” Fiz. Goreniya Vzryva 23(5), 5–15 (1987) [Combust., Explos., Shock Waves 23 (5), 511–520 (1987)].
[23] Z. A. Rana, B. Thornber, and D. Drikakis, ”Transverse Jet Injection into a Supersonic Turbulent Cross-Flow,” Phys. Fluids 23, 046103 (2011). · Zbl 06422360 · doi:10.1063/1.3570692
[24] A. O. Beketaeva and A. Zh. Naimanova, ”Numerical Study of Spatial Supersonic Flow of a Perfect Gas with Transverse Injection of Jets,” Prikl. Mekh. Tekh. Fiz. 52(6), 58–68 (2011) [Appl. Mech. Tech. Phys. 52 (6), 896–904 (2011)]. · Zbl 1298.76104
[25] R. L. Roe, ”Characteristic Based Schemes for the Euler Equations,” Annual Rev. Fluid Mech. 18, 337–365 (1986). · Zbl 0624.76093 · doi:10.1146/annurev.fl.18.010186.002005
[26] M. S. Liou, ”A Sequel to AUSM: AUSM+,” J. Comput. Phys. 129, 364–382 (1996). · Zbl 0870.76049 · doi:10.1006/jcph.1996.0256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.