zbMATH — the first resource for mathematics

Achieving net feedback gain in the linear-deterministic butterfly network with a full-duplex relay. (English) Zbl 1334.94031
Aydinian, Harout (ed.) et al., Information theory, combinatorics, and search theory. In memory of Rudolf Ahlswede. Berlin: Springer (ISBN 978-3-642-36898-1/pbk). Lecture Notes in Computer Science 7777, 167-208 (2013).
Summary: A symmetric butterfly network (BFN) with a full-duplex relay operating in a bi-directional fashion for feedback is considered. This network is relevant for a variety of wireless networks, including cellular systems dealing with cell-edge users. Upper bounds on the capacity region of the general memoryless BFN with feedback are derived based on cut-set and cooperation arguments and then specialized to the linear deterministic BFN with relay-source feedback. It is shown that the upper bounds are achievable using combinations of the compute-forward strategy and the classical decode-and-forward strategy, thus fully characterizing the capacity region. It is shown that net rate gains are possible in certain parameter regimes.
For the entire collection see [Zbl 1259.94005].
94A05 Communication theory
68M10 Network design and communication in computer systems
Full Text: DOI arXiv
[1] Ahlswede, R.: Multi-way communication channels. In: Proc. of 2nd International Symposium on Info. Theory, Tsahkadsor, Armenian S.S.R., pp. 23–52 (1971)
[2] Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. on Inf. Theory 46(4), 1204–1216 (2000) · Zbl 0991.90015 · doi:10.1109/18.850663
[3] Avestimehr, A.S., Diggavi, S., Tse, D.: A deterministic approach to wireless relay networks. In: Proc. of Allerton Conference (2007)
[4] Avestimehr, A.S., Ho, T.: Approximate capacity of the symmetric half-duplex Gaussian butterfly network. In: Proc. of the IEEE Information Theory Workshop (ITW), pp. 311–315 (2009) · doi:10.1109/ITWNIT.2009.5158593
[5] Avestimehr, A.S., Sezgin, A., Tse, D.: Capacity of the two-way relay channel within a constant gap. European Trans. in Telecommunications (2009)
[6] Carleial, A.B.: Interference channels. IEEE Trans. on Inf. Theory 24(1), 60–70 (1978) · Zbl 0373.94003 · doi:10.1109/TIT.1978.1055812
[7] Chaaban, A., Sezgin, A.: Achievable rates and upper bounds for the Gaussian interference relay channel. IEEE Trans. on Inf. Theory 58(7), 4432–4461 (2012) · Zbl 1365.94262 · doi:10.1109/TIT.2012.2191712
[8] Cover, T.M., El-Gamal, A.: Capacity theorems for the relay channel. IEEE Trans. on Inf. Theory IT-25(5), 572–584 (1979) · Zbl 0419.94004 · doi:10.1109/TIT.1979.1056084
[9] Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. John Wiley and Sons, Inc. (2006) · Zbl 1140.94001
[10] Gamal, A.E., Kim, Y.H.: Network Information Theory. Cambridge University Press (2011) · Zbl 1238.94001 · doi:10.1017/CBO9781139030687
[11] Han, T.S., Kobayashi, K.: A new achievable rate region for the interference channel. IEEE Trans. on Inf. Theory IT-27(1), 49–60 (1981) · Zbl 0452.94006 · doi:10.1109/TIT.1981.1056307
[12] Kim, S., Devroye, N., Mitran, P., Tarokh, V.: Comparisons of bi-directional relaying protocols. In: Proc. of the IEEE Sarnoff Symposium, Princeton, NJ (2008) · Zbl 1365.94240 · doi:10.1109/SARNOF.2008.4520117
[13] Mariç, I., Dabora, R., Goldsmith, A.J.: Relaying in the presence of interference: achievable rates, interference forwarding, and outer bounds. IEEE Trans. on Info. Theory 58(7), 4342–4354 (2012) · Zbl 1365.94028 · doi:10.1109/TIT.2012.2191710
[14] Narayanan, K., Wilson, M.P., Sprintson, A.: Joint physical layer coding and network coding for bi-directional relaying. In: Proc. of the Forty-Fifth Allerton Conference, Illinois (2007) · Zbl 1366.94042
[15] Nazer, B., Gastpar, M.: Compute-and-forward: harnessing interference through structured codes. IEEE Trans. on Inf. Theory 57(10), 6463–6486 (2011) · Zbl 1365.94030 · doi:10.1109/TIT.2011.2165816
[16] Rankov, B., Wittneben, A.: Spectral efficient signaling for half-duplex relay channels. In: Proc. of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA (2005) · doi:10.1109/ACSSC.2005.1599922
[17] Sahin, O., Erkip, E.: Achievable rates for the Gaussian interference relay channel. In: Proc. of 2007 GLOBECOM Communication Theory Symposium, Washington D.C (2007) · doi:10.1109/GLOCOM.2007.313
[18] Tuninetti, D.: An outer bound for the memoryless two-user interference channel with general cooperation. In: Proc. of the IEEE Information Theory Workshop (ITW), Lausanne (2012) · doi:10.1109/ITW.2012.6404662
[19] Yang, E., Tuninetti, D.: Interference channels with source cooperation in the strong cooperation regime: symmetric capacity to within 2 bits/s/Hz with dirty paper coding. In: Proc. of 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (2011) · doi:10.1109/ACSSC.2011.6190408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.