Mahata, Shantiram; Sinha, Rajen Kumar Finite element method for fractional parabolic integro-differential equations with smooth and nonsmooth initial data. (English) Zbl 07316881 J. Sci. Comput. 87, No. 1, Paper No. 7, 33 p. (2021). MSC: 35R09 35R11 65M60 65N15 PDF BibTeX XML Cite \textit{S. Mahata} and \textit{R. K. Sinha}, J. Sci. Comput. 87, No. 1, Paper No. 7, 33 p. (2021; Zbl 07316881) Full Text: DOI
Almasoodi, A. Y. J.; Abdi, A.; Hojjati, G. A GLMs-based difference-quadrature scheme for Volterra integro-differential equations. (English) Zbl 07316849 Appl. Numer. Math. 163, 292-302 (2021). MSC: 65R 65L 45L PDF BibTeX XML Cite \textit{A. Y. J. Almasoodi} et al., Appl. Numer. Math. 163, 292--302 (2021; Zbl 07316849) Full Text: DOI
Cheridito, Patrick; Patie, Pierre; Srapionyan, Anna; Vaidyanathan, Aditya On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity. (Sur les semi-groupes de Jacobi ergodiques et non locaux : théorie spectrale, convergence vers l’équilibre et contractivité.) (English. French summary) Zbl 07315959 J. Éc. Polytech., Math. 8, 331-378 (2021). MSC: 37A30 47D06 47G20 60J75 PDF BibTeX XML Cite \textit{P. Cheridito} et al., J. Éc. Polytech., Math. 8, 331--378 (2021; Zbl 07315959) Full Text: DOI
Wang, Zhibo; Cen, Dakang; Mo, Yan Sharp error estimate of a compact \(L1\)-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels. (English) Zbl 07310752 Appl. Numer. Math. 159, 190-203 (2021). MSC: 65M 35R PDF BibTeX XML Cite \textit{Z. Wang} et al., Appl. Numer. Math. 159, 190--203 (2021; Zbl 07310752) Full Text: DOI
Nowak, Simon Higher Hölder regularity for nonlocal equations with irregular kernel. (English) Zbl 07309168 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 24, 37 p. (2021). MSC: 35R09 35B65 35D30 47G20 PDF BibTeX XML Cite \textit{S. Nowak}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 24, 37 p. (2021; Zbl 07309168) Full Text: DOI
Chan, Hardy; Gómez-Castro, David; Vázquez, Juan Luis Blow-up phenomena in nonlocal eigenvalue problems: when theories of \(L^1\) and \(L^2\) meet. (English) Zbl 07306989 J. Funct. Anal. 280, No. 7, Article ID 108845, 69 p. (2021). MSC: 35R09 35R11 35J25 35B50 35D30 45C05 PDF BibTeX XML Cite \textit{H. Chan} et al., J. Funct. Anal. 280, No. 7, Article ID 108845, 69 p. (2021; Zbl 07306989) Full Text: DOI
Kumar, Kamlesh; Pandey, Rajesh K.; Sultana, Farheen Numerical schemes with convergence for generalized fractional integro-differential equations. (English) Zbl 07305236 J. Comput. Appl. Math. 388, Article ID 113318, 19 p. (2021). MSC: 65 26 PDF BibTeX XML Cite \textit{K. Kumar} et al., J. Comput. Appl. Math. 388, Article ID 113318, 19 p. (2021; Zbl 07305236) Full Text: DOI
Boen, Lynn; in ’t Hout, Karel J. Operator splitting schemes for the two-asset Merton jump-diffusion model. (English) Zbl 07305168 J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021). MSC: 65 35 45 PDF BibTeX XML Cite \textit{L. Boen} and \textit{K. J. in 't Hout}, J. Comput. Appl. Math. 387, Article ID 112309, 16 p. (2021; Zbl 07305168) Full Text: DOI
Kürkçü, Ömür Kıvanç; Sezer, Mehmet A directly convergent numerical method based on orthoexponential polynomials for solving integro-differential-delay equations with variable coefficients and infinite boundary on half-line. (English) Zbl 07305159 J. Comput. Appl. Math. 386, Article ID 113250, 16 p. (2021). MSC: 45J05 65R20 65L60 PDF BibTeX XML Cite \textit{Ö. K. Kürkçü} and \textit{M. Sezer}, J. Comput. Appl. Math. 386, Article ID 113250, 16 p. (2021; Zbl 07305159) Full Text: DOI
Grzywny, Tomasz; Kassmann, Moritz; Leżaj, Łukasz Remarks on the nonlocal Dirichlet problem. (English) Zbl 07303857 Potential Anal. 54, No. 1, 119-151 (2021). MSC: 35B65 35C15 35R09 47G20 60J45 PDF BibTeX XML Cite \textit{T. Grzywny} et al., Potential Anal. 54, No. 1, 119--151 (2021; Zbl 07303857) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Solving fractional Volterra integro-differential equations by using alternative Legendre functions. (English) Zbl 07302968 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 1, 1-14 (2021). MSC: 45J05 26A33 35C11 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 1, 1--14 (2021; Zbl 07302968) Full Text: Link
Durmaz, Muhammet Enes; Amiraliyev, Gabil M. A robust numerical method for a singularly perturbed Fredholm integro-differential equation. (English) Zbl 07302517 Mediterr. J. Math. 18, No. 1, Paper No. 24, 17 p. (2021). MSC: 65L11 65L12 65L20 65R20 45J05 PDF BibTeX XML Cite \textit{M. E. Durmaz} and \textit{G. M. Amiraliyev}, Mediterr. J. Math. 18, No. 1, Paper No. 24, 17 p. (2021; Zbl 07302517) Full Text: DOI
Darzi, Rahmat; Alvan, Meysam; Mahmoodi, Amin New approach on the solutions of nonlinear \(q\)-hybrid integro-differential equations. (English) Zbl 07301481 Anal. Math. Phys. 11, No. 1, Paper No. 19, 15 p. (2021). MSC: 45Jxx 47Gxx PDF BibTeX XML Cite \textit{R. Darzi} et al., Anal. Math. Phys. 11, No. 1, Paper No. 19, 15 p. (2021; Zbl 07301481) Full Text: DOI
Wang, Fuliang; Die, Hu; Xiang, Mingqi Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems. (English) Zbl 07301274 Anal. Math. Phys. 11, No. 1, Paper No. 9, 34 p. (2021). MSC: 35R11 35J57 47G20 PDF BibTeX XML Cite \textit{F. Wang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 9, 34 p. (2021; Zbl 07301274) Full Text: DOI
Li, Linyan; Shu, Ji; Bai, Qianqian; Li, Hui Asymptotic behavior of fractional stochastic heat equations in materials with memory. (English) Zbl 07291038 Appl. Anal. 100, No. 1, 145-166 (2021). MSC: 37L55 37L65 37L30 35R60 60H15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 100, No. 1, 145--166 (2021; Zbl 07291038) Full Text: DOI
Patrone, Paul N.; Li, Amy Q. H.; Cooksey, Gregory A.; Kearsley, Anthony J. Measuring microfluidic flow rates: monotonicity, convexity, and uncertainty. (English) Zbl 07281285 Appl. Math. Lett. 112, Article ID 106694, 6 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35R09 76A99 76W05 78A60 45G10 PDF BibTeX XML Cite \textit{P. N. Patrone} et al., Appl. Math. Lett. 112, Article ID 106694, 6 p. (2021; Zbl 07281285) Full Text: DOI
Kim, Minhyun; Lee, Ki-Ahm Generalized Evans-Krylov and Schauder type estimates for nonlocal fully nonlinear equations with rough kernels of variable orders. (English) Zbl 1451.35036 J. Differ. Equations 270, 883-915 (2021). MSC: 35B45 35R09 35B65 35J60 47G20 60G51 PDF BibTeX XML Cite \textit{M. Kim} and \textit{K.-A. Lee}, J. Differ. Equations 270, 883--915 (2021; Zbl 1451.35036) Full Text: DOI
Leonori, Tommaso; Molino, Alexis; Segura de León, Sergio Parabolic equations with natural growth approximated by nonlocal equations. (English) Zbl 1450.35064 Commun. Contemp. Math. 23, No. 1, Article ID 1950088, 32 p. (2021). MSC: 35B40 35B51 35K58 35R09 47G20 PDF BibTeX XML Cite \textit{T. Leonori} et al., Commun. Contemp. Math. 23, No. 1, Article ID 1950088, 32 p. (2021; Zbl 1450.35064) Full Text: DOI
Patrizi, Stefania; Sangsawang, Tharathep From the Peierls-Nabarro model to the equation of motion of the dislocation continuum. (English) Zbl 1451.82057 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112096, 50 p. (2021). MSC: 82D25 35R09 74E15 35R11 47G20 PDF BibTeX XML Cite \textit{S. Patrizi} and \textit{T. Sangsawang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112096, 50 p. (2021; Zbl 1451.82057) Full Text: DOI
Yang, Zhanwen; Yang, Huizi; Yao, Zichen Strong convergence analysis for Volterra integro-differential equations with fractional Brownian motions. (English) Zbl 1451.60079 J. Comput. Appl. Math. 383, Article ID 113156, 10 p. (2021). MSC: 60H35 91B70 PDF BibTeX XML Cite \textit{Z. Yang} et al., J. Comput. Appl. Math. 383, Article ID 113156, 10 p. (2021; Zbl 1451.60079) Full Text: DOI
Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Combination of Lucas wavelets with Legendre-Gauss quadrature for fractional Fredholm-Volterra integro-differential equations. (English) Zbl 1452.65403 J. Comput. Appl. Math. 382, Article ID 113070, 17 p. (2021). MSC: 65R20 45J05 45G10 65D32 PDF BibTeX XML Cite \textit{H. Dehestani} et al., J. Comput. Appl. Math. 382, Article ID 113070, 17 p. (2021; Zbl 1452.65403) Full Text: DOI
Agarwal, P.; El-Sayed, A. A.; Tariboon, J. Vieta-Fibonacci operational matrices for spectral solutions of variable-order fractional integro-differential equations. (English) Zbl 07241393 J. Comput. Appl. Math. 382, Article ID 113063, 10 p. (2021). MSC: 45J05 26A33 33C47 45J99 65R20 65Z05 PDF BibTeX XML Cite \textit{P. Agarwal} et al., J. Comput. Appl. Math. 382, Article ID 113063, 10 p. (2021; Zbl 07241393) Full Text: DOI
Amin, Rohul; Shah, Kamal; Asif, Muhammad; Khan, Imran; Ullah, Faheem An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. (English) Zbl 1451.65230 J. Comput. Appl. Math. 381, Article ID 113028, 16 p. (2021). MSC: 65R20 45J05 34A08 65L60 PDF BibTeX XML Cite \textit{R. Amin} et al., J. Comput. Appl. Math. 381, Article ID 113028, 16 p. (2021; Zbl 1451.65230) Full Text: DOI
Bardi, Martino; Cesaroni, Annalisa; Topp, Erwin Cauchy problem and periodic homogenization for nonlocal Hamilton-Jacobi equations with coercive gradient terms. (English) Zbl 07316369 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3028-3059 (2020). MSC: 35R09 35B27 35F25 35D40 PDF BibTeX XML Cite \textit{M. Bardi} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3028--3059 (2020; Zbl 07316369) Full Text: DOI
Abdellaoui, Boumediene; Fernández, Antonio J. Nonlinear fractional Laplacian problems with nonlocal ‘gradient terms’. (English) Zbl 07316353 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2682-2718 (2020). MSC: 35B65 35J62 35R09 47G20 PDF BibTeX XML Cite \textit{B. Abdellaoui} and \textit{A. J. Fernández}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2682--2718 (2020; Zbl 07316353) Full Text: DOI
Yuldasheva, A. V. On solvability of nonlinear integro-differential equation. (Russian. English summary) Zbl 07314746 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 3(32), 127-134 (2020). MSC: 45K05 PDF BibTeX XML Cite \textit{A. V. Yuldasheva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 3(32), 127--134 (2020; Zbl 07314746) Full Text: DOI MNR
Safavi, M.; Banar, J.; Khajehnasiri, A. A. Application of Legendre operational matrix to solution of two dimensional non-linear Volterra integro-differential equation. (English) Zbl 07314451 Casp. J. Math. Sci. 9, No. 2, 321-339 (2020). MSC: 45G10 65R20 PDF BibTeX XML Cite \textit{M. Safavi} et al., Casp. J. Math. Sci. 9, No. 2, 321--339 (2020; Zbl 07314451) Full Text: DOI
Mansouri, A.; Rezapour, Sh. Investigating a solution of a multi-singular pointwise defined fractional integro-differential equation with Caputo derivative boundary condition. (English) Zbl 07314263 J. Math. Ext. 14, No. 2, 15-47 (2020). MSC: 45J05 34A08 34B16 PDF BibTeX XML Cite \textit{A. Mansouri} and \textit{Sh. Rezapour}, J. Math. Ext. 14, No. 2, 15--47 (2020; Zbl 07314263) Full Text: Link
Janodi, M. R.; Majid, Z. A.; Ismail, F.; Senu, N. Numerical solution of Volterra integro-differential equations by hybrid block with quadrature rules method. (English) Zbl 07314099 Malays. J. Math. Sci. 14, No. 2, 191-208 (2020). MSC: 65R20 45D05 45J05 65L99 PDF BibTeX XML Cite \textit{M. R. Janodi} et al., Malays. J. Math. Sci. 14, No. 2, 191--208 (2020; Zbl 07314099) Full Text: Link
Providas, Efthimios; Parasidis, Ioannis Nestorios On the solution of some higher-order integro-differential equations of special form. (English) Zbl 07312511 Vestn. Samar. Univ., Estestvennonauchn. Ser. 26, No. 1, 14-22 (2020). MSC: 45M 45 45K 74H 80A PDF BibTeX XML Cite \textit{E. Providas} and \textit{I. N. Parasidis}, Vestn. Samar. Univ., Estestvennonauchn. Ser. 26, No. 1, 14--22 (2020; Zbl 07312511) Full Text: DOI MNR
Cruz, José M. T. S.; Ševčovič, Daniel On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models. (English) Zbl 07309987 Japan J. Ind. Appl. Math. 37, No. 3, 697-721 (2020). MSC: 45K05 35K58 34G20 91G20 PDF BibTeX XML Cite \textit{J. M. T. S. Cruz} and \textit{D. Ševčovič}, Japan J. Ind. Appl. Math. 37, No. 3, 697--721 (2020; Zbl 07309987) Full Text: DOI
Assanova, Anar T.; Bakirova, Elmira A.; Vassilina, Gulmira K. Well-posedness of problem with parameter for an integro-differential equation. (English) Zbl 07307905 Analysis, München 40, No. 4, 175-191 (2020). MSC: 45J05 45J99 PDF BibTeX XML Cite \textit{A. T. Assanova} et al., Analysis, München 40, No. 4, 175--191 (2020; Zbl 07307905) Full Text: DOI
Parvaz, R.; Zarebnia, M.; Bagherzadeh, A. Saboor A study of error estimation for second order Fredholm integro-differential equations. (English) Zbl 07301256 Indian J. Pure Appl. Math. 51, No. 3, 1203-1223 (2020). MSC: 65 41A25 45J05 65N35 PDF BibTeX XML Cite \textit{R. Parvaz} et al., Indian J. Pure Appl. Math. 51, No. 3, 1203--1223 (2020; Zbl 07301256) Full Text: DOI
Eckardt, Maria; Painter, Kevin J.; Surulescu, Christina; Zhigun, Anna Nonlocal and local models for taxis in cell migration: a rigorous limit procedure. (English) Zbl 07298366 J. Math. Biol. 81, No. 6-7, 1251-1298 (2020). MSC: 35Q92 92C17 35K55 35R09 47G20 35B45 35D30 35A01 PDF BibTeX XML Cite \textit{M. Eckardt} et al., J. Math. Biol. 81, No. 6--7, 1251--1298 (2020; Zbl 07298366) Full Text: DOI
Kitano, Shuhei ABP maximum principles for fully nonlinear integro-differential equations with unbounded inhomogeneous terms. (English) Zbl 07296568 SN Partial Differ. Equ. Appl. 1, No. 4, Paper No. 16, 11 p. (2020). Reviewer: Stefano Biagi (Milano) MSC: 35R09 47G20 PDF BibTeX XML Cite \textit{S. Kitano}, SN Partial Differ. Equ. Appl. 1, No. 4, Paper No. 16, 11 p. (2020; Zbl 07296568) Full Text: DOI
Zhang, Yan Dissipativity of multistep Runge-Kutta methods for a class of nonlinear functional-integro-differential equations. (Chinese. English summary) Zbl 07295669 J. Shanghai Univ., Nat. Sci. 26, No. 3, 456-471 (2020). MSC: 65L06 65L20 65L03 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Shanghai Univ., Nat. Sci. 26, No. 3, 456--471 (2020; Zbl 07295669) Full Text: DOI
Guo, Yating; Ye, Guoju; Liu, Wei; Zhao, Dafang Existence and unique solution of initial value problem for second-order interval-valued integro-differential equations. (Chinese. English summary) Zbl 07295544 J. Nat. Sci. Hunan Norm. Univ. 43, No. 3, 76-81 (2020). MSC: 34A12 PDF BibTeX XML Cite \textit{Y. Guo} et al., J. Nat. Sci. Hunan Norm. Univ. 43, No. 3, 76--81 (2020; Zbl 07295544) Full Text: DOI
He, Zerong; Zhou, Nan; Han, Mengjie Controllability of a hierarchical age-structured population system model. (Chinese. English summary) Zbl 07294998 Appl. Math., Ser. A (Chin. Ed.) 35, No. 2, 191-198 (2020). MSC: 93B05 92D25 93C20 45K05 PDF BibTeX XML Cite \textit{Z. He} et al., Appl. Math., Ser. A (Chin. Ed.) 35, No. 2, 191--198 (2020; Zbl 07294998) Full Text: DOI
Struzhanov, Valeriĭ Vladimirovich Integro-differential equations of the second boundary value problem of linear elasticity theory. II: Inhomogeneous anisotropic body. (Russian. English summary) Zbl 07294535 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 199-208 (2020). MSC: 74C10 PDF BibTeX XML Cite \textit{V. V. Struzhanov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 199--208 (2020; Zbl 07294535) Full Text: DOI MNR
Chang, Yong-Kui; Liu, Xiaojing Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. (English) Zbl 07293775 Evol. Equ. Control Theory 9, No. 3, 845-863 (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B05 35R09 35R70 34A60 PDF BibTeX XML Cite \textit{Y.-K. Chang} and \textit{X. Liu}, Evol. Equ. Control Theory 9, No. 3, 845--863 (2020; Zbl 07293775) Full Text: DOI
Munusamy, K.; Ravichandran, C.; Nisar, Kottakkaran Sooppy; Ghanbari, Behzad Existence of solutions for some functional integrodifferential equations with nonlocal conditions. (English) Zbl 07292736 Math. Methods Appl. Sci. 43, No. 17, 10319-10331 (2020). MSC: 45J05 34K30 34K40 PDF BibTeX XML Cite \textit{K. Munusamy} et al., Math. Methods Appl. Sci. 43, No. 17, 10319--10331 (2020; Zbl 07292736) Full Text: DOI
Dads, Elhadi Ait; Khelifi, Safoua; Miraoui, Mohsen On the integro-differential equations with reflection. (English) Zbl 07292732 Math. Methods Appl. Sci. 43, No. 17, 10262-10275 (2020). MSC: 45 35B15 47D06 PDF BibTeX XML Cite \textit{E. A. Dads} et al., Math. Methods Appl. Sci. 43, No. 17, 10262--10275 (2020; Zbl 07292732) Full Text: DOI
Sayevand, Khosro; Machado, J. Tenreiro; Masti, Iman On dual Bernstein polynomials and stochastic fractional integro-differential equations. (English) Zbl 07292713 Math. Methods Appl. Sci. 43, No. 17, 9928-9947 (2020). MSC: 60H20 65R20 45D05 PDF BibTeX XML Cite \textit{K. Sayevand} et al., Math. Methods Appl. Sci. 43, No. 17, 9928--9947 (2020; Zbl 07292713) Full Text: DOI
Ozhegova, A. V.; Khairullina, L. E. Well-posedness and uniform approximations of the solution of a boundary value problem for a singular integro-differential equation. (English) Zbl 07291215 Lobachevskii J. Math. 41, No. 11, 2239-2247 (2020). MSC: 65R20 65T60 47G20 PDF BibTeX XML Cite \textit{A. V. Ozhegova} and \textit{L. E. Khairullina}, Lobachevskii J. Math. 41, No. 11, 2239--2247 (2020; Zbl 07291215) Full Text: DOI
Gan, Xiaoting; Xu, Dengguo An efficient symmetric finite volume element method for second-order variable coefficient parabolic integro-differential equations. (English) Zbl 07291009 Comput. Appl. Math. 39, No. 4, Paper No. 264, 24 p. (2020). MSC: 65N08 65N12 65N30 PDF BibTeX XML Cite \textit{X. Gan} and \textit{D. Xu}, Comput. Appl. Math. 39, No. 4, Paper No. 264, 24 p. (2020; Zbl 07291009) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations. (English) Zbl 07291004 Comput. Appl. Math. 39, No. 4, Paper No. 259, 32 p. (2020). MSC: 26A33 33F05 35R09 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Comput. Appl. Math. 39, No. 4, Paper No. 259, 32 p. (2020; Zbl 07291004) Full Text: DOI
Liang, Ying; Liu, Li-Bin; Cen, Zhongdi A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations. (English) Zbl 07291000 Comput. Appl. Math. 39, No. 4, Paper No. 255, 17 p. (2020). MSC: 65L05 65L20 65L50 PDF BibTeX XML Cite \textit{Y. Liang} et al., Comput. Appl. Math. 39, No. 4, Paper No. 255, 17 p. (2020; Zbl 07291000) Full Text: DOI
Ghomanjani, F. A new approach for solving linear fractional integro-differential equations and multi variable order fractional differential equations. (English) Zbl 07289363 Proyecciones 39, No. 1, 199-218 (2020). MSC: 65K10 26A33 49K15 65R20 PDF BibTeX XML Cite \textit{F. Ghomanjani}, Proyecciones 39, No. 1, 199--218 (2020; Zbl 07289363) Full Text: DOI
Boulouz, A.; Bounit, H.; Driouich, A.; Hadd, S. On norm continuity, differentiability and compactness of perturbed semigroups. (English) Zbl 07286437 Semigroup Forum 101, No. 3, 547-570 (2020). MSC: 47 PDF BibTeX XML Cite \textit{A. Boulouz} et al., Semigroup Forum 101, No. 3, 547--570 (2020; Zbl 07286437) Full Text: DOI
Biswas, Anup; Modasiya, Mitesh Regularity results of nonlinear perturbed stable-like operators. (English) Zbl 07286014 Differ. Integral Equ. 33, No. 11-12, 597-624 (2020). MSC: 47G20 45K05 35B65 PDF BibTeX XML Cite \textit{A. Biswas} and \textit{M. Modasiya}, Differ. Integral Equ. 33, No. 11--12, 597--624 (2020; Zbl 07286014)
Ilea, Veronica; Otrocol, Diana On the Burton method of progressive contractions for Volterra integral equations. (English) Zbl 07285146 Fixed Point Theory 21, No. 2, 585-594 (2020). MSC: 45J05 37C25 47H10 47H09 PDF BibTeX XML Cite \textit{V. Ilea} and \textit{D. Otrocol}, Fixed Point Theory 21, No. 2, 585--594 (2020; Zbl 07285146) Full Text: Link
Ganji, Roghayeh Moallem; Jafari, Hossein A new approach for solving nonlinear Volterra integro-differential equations with Mittag-Leffler kernel. (English) Zbl 07285035 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 46, No. 1, 144-158 (2020). MSC: 65L05 65R20 45J05 26A33 PDF BibTeX XML Cite \textit{R. M. Ganji} and \textit{H. Jafari}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 46, No. 1, 144--158 (2020; Zbl 07285035) Full Text: DOI
Chuev, Nikolaĭ Pavlovich The Cauchy problem for system of Volterra integral equations describing the motion of a finite mass of a self-gravitating gas. (Russian. English summary) Zbl 07284428 Izv. Irkutsk. Gos. Univ., Ser. Mat. 33, 35-50 (2020). MSC: 45D05 83-02 PDF BibTeX XML Cite \textit{N. P. Chuev}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 33, 35--50 (2020; Zbl 07284428) Full Text: DOI Link
Gabbasov, N. S. On numerical solution of one class of integro-differential equations in a special case. (English. Russian original) Zbl 07282632 Comput. Math. Math. Phys. 60, No. 10, 1666-1678 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 10, 1721-1733 (2020). MSC: 65R20 47G20 45J05 PDF BibTeX XML Cite \textit{N. S. Gabbasov}, Comput. Math. Math. Phys. 60, No. 10, 1666--1678 (2020; Zbl 07282632); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 10, 1721--1733 (2020) Full Text: DOI
Zhu, Jianbo; Fu, Xianlong Existence results for neutral integro-differential equations with nonlocal conditions. (English) Zbl 07282586 J. Integral Equations Appl. 32, No. 2, 239-258 (2020). MSC: 45K05 47N20 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{X. Fu}, J. Integral Equations Appl. 32, No. 2, 239--258 (2020; Zbl 07282586) Full Text: DOI Euclid
Falaleev, Mikhaĭl Valentinovich Fundamental operator functions of integro-differential operators under spectral or polynomial boundedness. (Russian. English summary) Zbl 07281903 Ufim. Mat. Zh. 12, No. 2, 55-70 (2020); translation in Ufa Math. J. 12, No. 2, 56-71 (2020). MSC: 34G10 45K05 45N05 PDF BibTeX XML Cite \textit{M. V. Falaleev}, Ufim. Mat. Zh. 12, No. 2, 55--70 (2020; Zbl 07281903); translation in Ufa Math. J. 12, No. 2, 56--71 (2020) Full Text: DOI MNR
Fedotov, Aleksandr Ivanovich On asymptotic convergence of polynomial collocation method for one class of singular integro-differential equations. (Russian. English summary) Zbl 07281890 Ufim. Mat. Zh. 12, No. 1, 43-55 (2020); translation in Ufa Math. J. 12, No. 1, 43-55 (2020). MSC: 65R20 PDF BibTeX XML Cite \textit{A. I. Fedotov}, Ufim. Mat. Zh. 12, No. 1, 43--55 (2020; Zbl 07281890); translation in Ufa Math. J. 12, No. 1, 43--55 (2020) Full Text: DOI MNR
Scott, James M.; Mengesha, Tadele Asymptotic analysis of a coupled system of nonlocal equations with oscillatory coefficients. (English) Zbl 1453.35018 Multiscale Model. Simul. 18, No. 4, 1462-1488 (2020). MSC: 35B27 35R09 74Q05 35J47 35L53 PDF BibTeX XML Cite \textit{J. M. Scott} and \textit{T. Mengesha}, Multiscale Model. Simul. 18, No. 4, 1462--1488 (2020; Zbl 1453.35018) Full Text: DOI
Kumar, Lalit; Sista, Sivaji Ganesh; Sreenadh, Konijeti Finite element analysis of parabolic integro-differential equations of Kirchhoff type. (English) Zbl 07279040 Math. Methods Appl. Sci. 43, No. 15, 9129-9150 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65N30 65M06 65N12 65M12 65N15 65M15 35J35 35R09 45K05 PDF BibTeX XML Cite \textit{L. Kumar} et al., Math. Methods Appl. Sci. 43, No. 15, 9129--9150 (2020; Zbl 07279040) Full Text: DOI
Restrepo, Joel E.; Suragan, Durvudkhan Oscillatory solutions of fractional integro-differential equations. (English) Zbl 1452.45007 Math. Methods Appl. Sci. 43, No. 15, 9080-9089 (2020). MSC: 45J05 34K11 34K37 34K40 PDF BibTeX XML Cite \textit{J. E. Restrepo} and \textit{D. Suragan}, Math. Methods Appl. Sci. 43, No. 15, 9080--9089 (2020; Zbl 1452.45007) Full Text: DOI
Durdiev, Durdimurod Kalandarovich; Rahmonov, Askar Ahmadovich A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity. (English) Zbl 1453.35188 Math. Methods Appl. Sci. 43, No. 15, 8776-8796 (2020). MSC: 35R30 35L20 35Q74 35G46 35R09 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{A. A. Rahmonov}, Math. Methods Appl. Sci. 43, No. 15, 8776--8796 (2020; Zbl 1453.35188) Full Text: DOI
Ding, Hang; Zhou, Jun Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. (English) Zbl 1452.35073 Nonlinearity 33, No. 11, 6099-6133 (2020). MSC: 35K20 35K58 35R11 47G20 35B44 35R09 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Nonlinearity 33, No. 11, 6099--6133 (2020; Zbl 1452.35073) Full Text: DOI
Hamit, Mahamat Hassan Mahamat; Allognissode, Fulbert Kuessi; Mohamed, Mohamed salem; Issaka, Louk-Man; Diop, Mamadou Abdoul Attractiveness and exponential \(p\)-stability of neutral stochastic functional integro-differential equations driven by Wiener process and fBm with impulses effects. (English) Zbl 07274339 Discontin. Nonlinearity Complex. 9, No. 3, 351-366 (2020). MSC: 60 45 PDF BibTeX XML Cite \textit{M. H. M. Hamit} et al., Discontin. Nonlinearity Complex. 9, No. 3, 351--366 (2020; Zbl 07274339) Full Text: DOI
Diop, Mamadou Abdoul; Ezzinbi, Khalil; Issaka, Louk-Man; Ramkumar, Kasinathan Stability for some impulsive neutral stochastic functional integro-differential equations driven by fractional Brownian motion. (English) Zbl 07273115 Cogent Math. Stat. 7, Article ID 1782120, 24 p. (2020). MSC: 45J 34K PDF BibTeX XML Cite \textit{M. A. Diop} et al., Cogent Math. Stat. 7, Article ID 1782120, 24 p. (2020; Zbl 07273115) Full Text: DOI
Dzhumabaev, D. S.; Nazarova, K. Zh.; Uteshova, R. E. A modification of the parameterization method for a linear boundary value problem for a Fredholm integro-differential equation. (English) Zbl 1453.65450 Lobachevskii J. Math. 41, No. 9, 1791-1800 (2020). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{D. S. Dzhumabaev} et al., Lobachevskii J. Math. 41, No. 9, 1791--1800 (2020; Zbl 1453.65450) Full Text: DOI
Caffarelli, Luis; Teymurazyan, Rafayel; Urbano, José Miguel Fully nonlinear integro-differential equations with deforming kernels. (English) Zbl 1452.35055 Commun. Partial Differ. Equations 45, No. 8, 847-871 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B65 35R09 35J60 35J96 47G20 35D40 PDF BibTeX XML Cite \textit{L. Caffarelli} et al., Commun. Partial Differ. Equations 45, No. 8, 847--871 (2020; Zbl 1452.35055) Full Text: DOI
Benedetti, Irene; Bisconti, Luca Well-posedness for a system of integro-differential equations. (English) Zbl 07270824 Differ. Equ. Dyn. Syst. 28, No. 4, 999-1013 (2020). MSC: 45J05 47G20 45G10 PDF BibTeX XML Cite \textit{I. Benedetti} and \textit{L. Bisconti}, Differ. Equ. Dyn. Syst. 28, No. 4, 999--1013 (2020; Zbl 07270824) Full Text: DOI
Berenguer, M. I.; Gámez, D. Projected iterations of fixed-point type to solve nonlinear partial Volterra integro-differential equations. (English) Zbl 07270627 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4431-4442 (2020). MSC: 45A05 45L05 45N05 65R20 PDF BibTeX XML Cite \textit{M. I. Berenguer} and \textit{D. Gámez}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4431--4442 (2020; Zbl 07270627) Full Text: DOI
Marzban, Hamid Reza; Rostami Ashani, Mehrdad A class of nonlinear optimal control problems governed by Fredholm integro-differential equations with delay. (English) Zbl 1453.93110 Int. J. Control 93, No. 9, 2199-2211 (2020). MSC: 93C15 93C43 93C10 49J15 45B05 PDF BibTeX XML Cite \textit{H. R. Marzban} and \textit{M. Rostami Ashani}, Int. J. Control 93, No. 9, 2199--2211 (2020; Zbl 1453.93110) Full Text: DOI
Lastra, A.; Malek, S. On parametric Gevrey asymptotics for some nonlinear initial value problems in symmetric complex time variables. (English) Zbl 07268676 Asymptotic Anal. 118, No. 1-2, 49-79 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35Q99 35R09 35B40 35C20 35B25 44A10 42A38 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Asymptotic Anal. 118, No. 1--2, 49--79 (2020; Zbl 07268676) Full Text: DOI
Fiscella, Alessio; Pucci, Patrizia Degenerate Kirchhoff \((p, q)\)-fractional systems with critical nonlinearities. (English) Zbl 07268199 Fract. Calc. Appl. Anal. 23, No. 3, 723-752 (2020). MSC: 35B08 35B33 35J47 35R11 35J20 35J50 35J60 35J62 PDF BibTeX XML Cite \textit{A. Fiscella} and \textit{P. Pucci}, Fract. Calc. Appl. Anal. 23, No. 3, 723--752 (2020; Zbl 07268199) Full Text: DOI
Yuldashev, T. K.; Zarifzoda, S. K. New type super singular integro-differential equation and its conjugate equation. (English) Zbl 1445.35295 Lobachevskii J. Math. 41, No. 6, 1123-1130 (2020). MSC: 35R09 35C05 PDF BibTeX XML Cite \textit{T. K. Yuldashev} and \textit{S. K. Zarifzoda}, Lobachevskii J. Math. 41, No. 6, 1123--1130 (2020; Zbl 1445.35295) Full Text: DOI
Wang, Xiwen; Wang, Lijie; Wang, Hui; Zhang, Xin; Ren, Hanjing; Ma, Yan Eigenvalue problem for a transport equation in slab geometry. (Chinese. English summary) Zbl 07267446 Math. Pract. Theory 50, No. 8, 234-240 (2020). MSC: 47A75 45K05 47G20 PDF BibTeX XML Cite \textit{X. Wang} et al., Math. Pract. Theory 50, No. 8, 234--240 (2020; Zbl 07267446)
Zhu, Shuai; Zhu, Shixin Legendre wavelet method for numerically solving nonlinear system of Volterra integro-differential equations. (Chinese. English summary) Zbl 07267302 Math. Pract. Theory 49, No. 24, 202-207 (2020). MSC: 65T60 65R20 PDF BibTeX XML Cite \textit{S. Zhu} and \textit{S. Zhu}, Math. Pract. Theory 49, No. 24, 202--207 (2020; Zbl 07267302)
Bondarenko, Natalia; Buterin, Sergey Numerical solution and stability of the inverse spectral problem for a convolution integro-differential operator. (English) Zbl 1452.65416 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105298, 10 p. (2020). MSC: 65R32 45J05 47G20 PDF BibTeX XML Cite \textit{N. Bondarenko} and \textit{S. Buterin}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105298, 10 p. (2020; Zbl 1452.65416) Full Text: DOI
Ali, Arshed; Ahmad, Shakeel; Haq, Fazal-I; Hussain, Iltaf; Khan, Hassan; Bushnaq, Samia Numerical simulation of nonlinear parabolic type Volterra partial integro-differential equations using quartic B-spline collocation method. (English) Zbl 1451.65229 Nonlinear Stud. 27, No. 3, 621-636 (2020). MSC: 65R20 45D05 45K05 65M70 PDF BibTeX XML Cite \textit{A. Ali} et al., Nonlinear Stud. 27, No. 3, 621--636 (2020; Zbl 1451.65229) Full Text: Link
Assanova, A. T.; Bakirova, E. A.; Kadirbayeva, Zh. M. Numerical solution to a control problem for integro-differential equations. (English) Zbl 1453.65445 Comput. Math. Math. Phys. 60, No. 2, 203-221 (2020) and Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 197-215 (2020). MSC: 65R20 45J05 49M25 34B05 34K35 PDF BibTeX XML Cite \textit{A. T. Assanova} et al., Comput. Math. Math. Phys. 60, No. 2, 203--221 (2020; Zbl 1453.65445) Full Text: DOI
Pertsev, Nikolay; Loginov, Konstantin; Bocharov, Gennady Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. (English) Zbl 1451.92309 Discrete Contin. Dyn. Syst., Ser. S 13, No. 9, 2365-2384 (2020). MSC: 92D30 34K60 45J05 PDF BibTeX XML Cite \textit{N. Pertsev} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 9, 2365--2384 (2020; Zbl 1451.92309) Full Text: DOI
Liang, Sihua; Rădulescu, Vicenţiu D. Least-energy nodal solutions of critical Kirchhoff problems with logarithmic nonlinearity. (English) Zbl 1450.35274 Anal. Math. Phys. 10, No. 4, Paper No. 45, 31 p. (2020). MSC: 35R11 35A15 35B33 35J92 35J25 47G20 PDF BibTeX XML Cite \textit{S. Liang} and \textit{V. D. Rădulescu}, Anal. Math. Phys. 10, No. 4, Paper No. 45, 31 p. (2020; Zbl 1450.35274) Full Text: DOI
Shirzadi, Mohammad; Dehghan, Mehdi; Foroush Bastani, Ali On the pricing of multi-asset options under jump-diffusion processes using meshfree moving least-squares approximation. (English) Zbl 07261585 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105160, 18 p. (2020). MSC: 45K05 60G51 60H30 65M06 65M70 35R35 PDF BibTeX XML Cite \textit{M. Shirzadi} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105160, 18 p. (2020; Zbl 07261585) Full Text: DOI
Zhang, Gengen; Zhu, Rui Runge-Kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional integro-differential equations. (English) Zbl 1450.65182 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105132, 14 p. (2020). MSC: 65R20 65L06 45J05 26A33 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{R. Zhu}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105132, 14 p. (2020; Zbl 1450.65182) Full Text: DOI
Eshaghi, Shiva; Ghaziani, Reza Khoshsiar; Ansari, Alireza Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems. (English) Zbl 07261317 Comput. Appl. Math. 39, No. 4, Paper No. 250, 21 p. (2020). MSC: 26A33 45K05 PDF BibTeX XML Cite \textit{S. Eshaghi} et al., Comput. Appl. Math. 39, No. 4, Paper No. 250, 21 p. (2020; Zbl 07261317) Full Text: DOI
Assanova, Anar T.; Bakirova, Elmira A.; Kadirbayeva, Zhazira M.; Uteshova, Roza E. A computational method for solving a problem with parameter for linear systems of integro-differential equations. (English) Zbl 07261315 Comput. Appl. Math. 39, No. 3, Paper No. 248, 23 p. (2020). MSC: 34B08 34H05 45J05 34K28 PDF BibTeX XML Cite \textit{A. T. Assanova} et al., Comput. Appl. Math. 39, No. 3, Paper No. 248, 23 p. (2020; Zbl 07261315) Full Text: DOI
Fall, Mouhamed Moustapha Regularity results for nonlocal equations and applications. (English) Zbl 1450.35093 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 181, 52 p. (2020). MSC: 35B65 35B45 35J15 35R11 47G20 PDF BibTeX XML Cite \textit{M. M. Fall}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 181, 52 p. (2020; Zbl 1450.35093) Full Text: DOI
Gabbasov, N. S. On the approximate solution of integro-differential equations with a degenerate coefficient. (English. Russian original) Zbl 07260758 Differ. Equ. 56, No. 9, 1230-1236 (2020); translation from Differ. Uravn. 56, No. 9, 1263-1269 (2020). MSC: 45J05 PDF BibTeX XML Cite \textit{N. S. Gabbasov}, Differ. Equ. 56, No. 9, 1230--1236 (2020; Zbl 07260758); translation from Differ. Uravn. 56, No. 9, 1263--1269 (2020) Full Text: DOI
Klimsiak, Tomasz On uniqueness and structure of renormalized solutions to integro-differential equations with general measure data. (English) Zbl 1450.35006 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 5, Paper No. 47, 24 p. (2020). MSC: 35A02 35R06 35R05 45K05 47G20 35R09 PDF BibTeX XML Cite \textit{T. Klimsiak}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 5, Paper No. 47, 24 p. (2020; Zbl 1450.35006) Full Text: DOI
Yüzbaşi, Şuayip; Yıldırım, Gamze Pell-Lucas collocation method to solve high-order linear Fredholm-Volterra integro-differential equations and residual correction. (English) Zbl 1450.65074 Turk. J. Math. 44, No. 4, 1065-1091 (2020). MSC: 65L60 65L70 42C05 45B05 45D05 45J05 PDF BibTeX XML Cite \textit{Ş. Yüzbaşi} and \textit{G. Yıldırım}, Turk. J. Math. 44, No. 4, 1065--1091 (2020; Zbl 1450.65074) Full Text: DOI
Liu, Xiaohua; Deng, Feiqi; Liu, Linna; Luo, Shixian; Zhao, Xueyan Mean-square stability of two classes of \(\theta \)-methods for neutral stochastic delay integro-differential equations. (English) Zbl 1450.65003 Appl. Math. Lett. 109, Article ID 106544, 7 p. (2020). MSC: 65C30 60H35 35R11 60G22 60H15 PDF BibTeX XML Cite \textit{X. Liu} et al., Appl. Math. Lett. 109, Article ID 106544, 7 p. (2020; Zbl 1450.65003) Full Text: DOI
Uddin, Marjan; Taufiq, Muhammad On the local transformed based method for partial integro-differential equations of fractional order. (English) Zbl 07254909 Miskolc Math. Notes 21, No. 1, 435-449 (2020). MSC: 65R10 65R20 PDF BibTeX XML Cite \textit{M. Uddin} and \textit{M. Taufiq}, Miskolc Math. Notes 21, No. 1, 435--449 (2020; Zbl 07254909) Full Text: DOI
Rezabeyk, S.; Abbasbandy, S.; Shivanian, E. Solving fractional-order delay integro-differential equations using operational matrix based on fractional-order Euler polynomials. (English) Zbl 1452.65143 Math. Sci., Springer 14, No. 2, 97-107 (2020). MSC: 65L60 34K37 45J05 65L03 PDF BibTeX XML Cite \textit{S. Rezabeyk} et al., Math. Sci., Springer 14, No. 2, 97--107 (2020; Zbl 1452.65143) Full Text: DOI
Iskandarov, Samandar; Abdiraiimova, Nazigai A. On the influence of integral perturbations to the asymptotic stability of solutions of a second-order linear differential equation. (English. Ukrainian original) Zbl 07253823 J. Math. Sci., New York 249, No. 5, 733-738 (2020); translation from Ukr. Mat. Visn. 17, No. 2, 188-195 (2020). MSC: 45J05 34 PDF BibTeX XML Cite \textit{S. Iskandarov} and \textit{N. A. Abdiraiimova}, J. Math. Sci., New York 249, No. 5, 733--738 (2020; Zbl 07253823); translation from Ukr. Mat. Visn. 17, No. 2, 188--195 (2020) Full Text: DOI
Jangveladze, Temur; Kiguradze, Zurab Averaged semi-discrete scheme of sum-approximation for one nonlinear multi-dimensional integro-differential parabolic equation. (English) Zbl 07251328 Georgian Math. J. 27, No. 3, 367-373 (2020). MSC: 45K05 35Q61 65M06 PDF BibTeX XML Cite \textit{T. Jangveladze} and \textit{Z. Kiguradze}, Georgian Math. J. 27, No. 3, 367--373 (2020; Zbl 07251328) Full Text: DOI
Yang, Yin; Kang, Sujuan; Vasil’ev, Vasiliy I. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. (English) Zbl 1448.65084 Electron Res. Arch. 28, No. 3, 1161-1189 (2020). MSC: 65L60 65L70 34A12 74S25 33C45 34A08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Electron Res. Arch. 28, No. 3, 1161--1189 (2020; Zbl 1448.65084) Full Text: DOI
Khochemane, Houssem Eddine; Ardjouni, Abdelouaheb; Zitouni, Salah Existence results and approximate solutions of Volterra Fredholm integro-differential equations. (English) Zbl 07249496 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 5, 329-346 (2020). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 5, 329--346 (2020; Zbl 07249496) Full Text: Link
Dadsetadi, Somayyeh; Nouri, Kazem; Torkzadeh, Leila Solvability of some nonlinear integro-differential equations of fractional order via measure of noncompactness. (English) Zbl 07249203 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 27, No. 1, 13-24 (2020). MSC: 45J05 34A08 26A33 47H10 PDF BibTeX XML Cite \textit{S. Dadsetadi} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 27, No. 1, 13--24 (2020; Zbl 07249203)
Hussain, Khawlah H. Alternative Legendre functions for solving nonlinear fractional Fredholm integro-differential equations. (English) Zbl 07249073 Nonlinear Dyn. Syst. Theory 20, No. 1, 61-71 (2020). MSC: 45J05 26A33 35C11 PDF BibTeX XML Cite \textit{K. H. Hussain}, Nonlinear Dyn. Syst. Theory 20, No. 1, 61--71 (2020; Zbl 07249073) Full Text: Link
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana; Soria, Fernando Fractional KPZ equations with critical growth in the gradient respect to Hardy potential. (English) Zbl 07249024 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111942, 29 p. (2020). MSC: 47G20 35J75 35J62 35R09 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 201, Article ID 111942, 29 p. (2020; Zbl 07249024) Full Text: DOI
Moussaoui, A.; Volpert, V. Speed of wave propagation for a nonlocal reaction-diffusion equation. (English) Zbl 1448.35073 Appl. Anal. 99, No. 13, 2307-2321 (2020). MSC: 35C07 35K57 35K15 35R09 PDF BibTeX XML Cite \textit{A. Moussaoui} and \textit{V. Volpert}, Appl. Anal. 99, No. 13, 2307--2321 (2020; Zbl 1448.35073) Full Text: DOI
Massar, Mohammed; Talbi, Mohamed On a class of \(p\)-fractional Laplacian equations with potential depending on parameter. (English) Zbl 1448.35555 Math. Methods Appl. Sci. 43, No. 5, 2721-2734 (2020). MSC: 35R11 35A15 35J92 47G20 35D30 PDF BibTeX XML Cite \textit{M. Massar} and \textit{M. Talbi}, Math. Methods Appl. Sci. 43, No. 5, 2721--2734 (2020; Zbl 1448.35555) Full Text: DOI
Mahmoudi, Mostafa; Ghovatmand, Mehdi; Skandari, Mohammad Hadi Noori A novel numerical method and its convergence for nonlinear delay Volterra integro-differential equations. (English) Zbl 1452.65408 Math. Methods Appl. Sci. 43, No. 5, 2357-2368 (2020). MSC: 65R20 45J05 45D05 90C30 PDF BibTeX XML Cite \textit{M. Mahmoudi} et al., Math. Methods Appl. Sci. 43, No. 5, 2357--2368 (2020; Zbl 1452.65408) Full Text: DOI