×

Computing cup products in integral cohomology of Hilbert schemes of points on \(K3\) surfaces. (English) Zbl 1347.14005

The Hilbert schemes of points on a \(K3\) surface are irreducible holomorphic symplectic manifolds. The cup products in the integral cohomology are studied. A computer algebra program is used to compute the cup products. The source code and an explanation how to use it is given in an appendix.
Let \(S^{[3]}\) be the Hilbert scheme of three points on a projective \(K3\) surface. \(\mathrm{Sym}^kH^2(S^{[3]}, \mathbb{Z})\) can be identified with its image in \(H^{2k}(S^{[3]}, \mathbb{Z})\) under the cup product mapping. As a result of the computations the following theorem is obtained:
\(H^4(S^{[3]}, \mathbb{Z})/\mathrm{Sym}^2H^2(S^{[3]}, \mathbb{Z})\simeq\mathbb{Z}/3\mathbb{Z}\oplus \mathbb{Z}^{23}\)
\(H^6(S^{[3]}, \mathbb{Z})/H^2 (S^{[3]}, \mathbb{Z})\cup H^4(S^{[3]}, \mathbb{Z})\simeq(\mathbb{Z}/3\mathbb{Z})^{23}\).

MSC:

14J10 Families, moduli, classification: algebraic theory
14Q15 Computational aspects of higher-dimensional varieties
05A17 Combinatorial aspects of partitions of integers
55N32 Orbifold cohomology

Software:

HilbK3; Haskell; GHC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.2307/2373541 · Zbl 0176.18401 · doi:10.2307/2373541
[2] Ellingsrud, J. Algebra. Geom. 10 pp 81– (2001)
[3] Dénes, Publ. Math. Inst. Hung. Acad. Sci. 4 pp 63– (1959)
[4] DOI: 10.1112/jtopol/jtt002 · Zbl 1295.14023 · doi:10.1112/jtopol/jtt002
[5] DOI: 10.1007/BF02247112 · Zbl 0861.53069 · doi:10.1007/BF02247112
[6] DOI: 10.1007/s00222-002-0270-7 · Zbl 1035.14001 · doi:10.1007/s00222-002-0270-7
[7] DOI: 10.2307/2951818 · Zbl 0915.14001 · doi:10.2307/2951818
[8] DOI: 10.1007/978-3-642-88330-9 · doi:10.1007/978-3-642-88330-9
[9] DOI: 10.1142/S0129167X10005957 · Zbl 1184.14074 · doi:10.1142/S0129167X10005957
[10] DOI: 10.1016/j.aim.2006.03.006 · Zbl 1115.14036 · doi:10.1016/j.aim.2006.03.006
[11] DOI: 10.1007/s00208-004-0602-6 · Zbl 1081.14006 · doi:10.1007/s00208-004-0602-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.