×

A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization. (English) Zbl 1453.76221

Summary: The development of a single-fluid solver supporting phase-change and able to capture the evolution of three fluids, two of which are miscible, into the sharp interface capturing Volume of Fluid (VOF) approximation, is presented. The transport of each phase-fraction is solved independently by a flux-corrected transport method to ensure the boundedness of the void fraction over the domain. The closure of the system of equations is achieved by a cavitation model, that handles the phase change between the liquid and the fuel vapor and it also accounts for the interaction with the non-condensable gases. Boundedness and conservativeness of the solver in the transport of the volume fraction are verified on two numerical benchmarks: a two-dimensional bubble rising in a liquid column and a cavitating/condensing liquid column. Finally, numerical predictions from large-eddy simulations are compared against experimental results available from literature; in particular, validation against high-speed camera visualizations and Laser Doppler Velocimetry (LDV) measurements of cavitating microscopic in-nozzle flows in a fuel injector is reported.

MSC:

76T30 Three or more component flows
76M12 Finite volume methods applied to problems in fluid mechanics
80A22 Stefan problems, phase changes, etc.
76T10 Liquid-gas two-phase flows, bubbly flows
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Yin, B.; Yu, S.; Jia, H.; Yu, J., Numerical research of diesel spray and atomization coupled cavitation by large eddy simulation (LES) under high injection pressure, Int. J. Heat Fluid Flow, 59, 1-9 (2016)
[2] Makhlouf, S.; Hélie, J.; Grimoux, G.; Cousin, J.; Gestri, L.; Wood, A.; Wigley, G., Large eddy simulation of cavitation and atomization in injector flows using OpenFOAM, (ICLASS 2012, 12th Triennial Int. Conference on Liquid Atomization and Spray Systems. ICLASS 2012, 12th Triennial Int. Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany (2012))
[3] Soriano-Palao, O. J.; Sommerfeld, M.; Burkhardt, A., Modelling the influence of the nozzle geometry on the primary breakup of diesel jets, Int. J. Spray Combust. Dyn., 6, 2, 113-146 (2014)
[4] Shi, J. M.; Wenzlawski, K.; Helie, J.; Nuglish, H.; Cousin, J., URANS and SAS analysis of flow dynamics in a GDI nozzle, (ILASS - Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems. ILASS - Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 (2010))
[5] Gavaises, M.; Andriotis, A.; Papoulias, D.; Mitroglou, N.; Theodorakakos, A., Characterization of string cavitation in large-scale diesel nozzles with tapered holes, Phys. Fluids, 21, 5, Article 052107 pp. (2009) · Zbl 1183.76211
[6] Chaves, H.; Knapp, M.; Kubitzek, A.; Obermeier, F., Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles (1995), SAE Technical Paper 950290
[7] Iben, U.; Morozov, A.; Winklhofer, E.; Wolf, F., Laser-pulse interferometry applied to high-pressure fluid flow in micro channels, Exp. Fluids, 50, 3, 597-611 (2011)
[8] Serras-Pereira, J.; van Romunde, Z.; Aleiferis, P.; Richardson, D.; Wallace, S.; Cracknell, R., Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle, Fuel, 89, 9, 2592-2607 (2010)
[9] Chen, Z.; He, Z.; Shang, W.; Duan, L.; Zhou, H.; Guo, G.; Guan, W., Experimental study on the effect of nozzle geometry on string cavitation in real-size optical diesel nozzles and spray characteristics, Fuel, 232, 562-571 (2018)
[10] Roohi, E.; Zahiri, A. P.; Passandideh-Fard, M., Numerical simulation of cavitation around a two-dimensional hydrofoil using VoF method and LES turbulence model, Appl. Math. Model., 37, 9, 6469-6488 (2013)
[11] Kawakami, E.; Arndt, R., Investigation of the behavior of ventilated supercavities, ASME J. Fluids Eng., 133, 9 (2011)
[12] Kim, J. H.; Nishida, K.; Hiroyasu, H., Characteristics of the internal flow in a diesel injection nozzle, Int. J. Fluid Mech. Res., 24, 1-3, 34-44 (1997)
[13] Husson, R.; Ganippa, L.; Zhao, H., Flow and cavitation structure in a scaled-up multi hole optical diesel nozzle, (22nd European Conference on Liquid Atomization and Spray Systems. 22nd European Conference on Liquid Atomization and Spray Systems, ILASS, 8-10 September 2008, Como, Italy (2008))
[14] Andriotis, A.; Gavaises, M., Influence of vortex flow and cavitation on near-nozzle diesel spray dispersion angle, At. Sprays, 19, 3, 247-261 (2009)
[15] Reynolds, A. J., Thermo-fluid dynamic theory of two-phase flow. By M. ISHIL Eyrolles 1975. 248 pp. 83f or \( 2160, J. Fluid Mech., 78, 03, 638 (1976\)
[16] Hanratty, T. J.; Theofanous, T.; Delhaye, J. M.; Eaton, J.; McLaughlin, J.; Prosperetti, A.; Sundaresan, S.; Tryggvason, G., Workshop findings, Int. J. Multiph. Flow, 29, 7, 1047-1059 (2003) · Zbl 1136.76519
[17] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, B.; Han, J.; Nas, S.; Jan, Y., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[18] Du, J.; Fix, B.; Glimm, J.; Jia, X.; Li, X.; Li, Y.; Wu, L., A simple package for front tracking, J. Comput. Phys., 213, 613-628 (2006) · Zbl 1089.65128
[19] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225 (1981) · Zbl 0462.76020
[20] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 1, 341-372 (2003) · Zbl 1041.76057
[21] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[22] Ménard, T.; Tanguy, S.; Berlemont, A., Coupling level set/VoF/ghost fluid methods: validation and application to 3d simulation of the primary break-up of a liquid jet, Int. J. Multiph. Flow, 33, 5, 510-524 (2007)
[23] Wang, Z.; Yang, J.; Koo, B.; Stern, F., A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves, Int. J. Multiph. Flow, 35, 3, 227-246 (2009)
[24] Plesset, M. S., Cavitating Flows (1969), Division of Engineering and Applied Science, California Institute of Technology, Tech. rep.
[25] Plesset, M. S., The dynamics of cavitation bubbles, J. Appl. Mech., 16, 277-282 (1949)
[26] Plesset, M. S.; Prosperetti, A., Bubble dynamics and cavitation, Annu. Rev. Fluid Mech., 9, 1, 145-185 (1977) · Zbl 0418.76074
[27] Lord Rayleigh, O. F., VIII. On the pressure developed in a liquid during the collapse of a spherical cavity, Lond. Edinb. Dublin Philos. Mag. J. Sci., 34, 200, 94-98 (1917) · JFM 46.1274.01
[28] Mithun, M.-G.; Koukouvinis, P.; Gavaises, M., Numerical simulation of cavitation and atomization using a fully compressible three-phase model, Phys. Rev. Fluids, 3, Article 064304 pp. (2018)
[29] Wang, Y.; Reitz, R. D., Eulerian two-phase flow CFD simulation using a compressible and equilibrium eight-equation model, (ILASS 2015, 27th Annual Conference on Liquid Atomization and Spray Systems. ILASS 2015, 27th Annual Conference on Liquid Atomization and Spray Systems, Raleigh, NC (2015))
[30] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech., 607, 313-350 (2008) · Zbl 1147.76060
[31] Orley, F.; Trummler, T.; Hickel, S.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A., Large-eddy simulation of cavitating nozzle flow and primary jet break-up, Phys. Fluids, 27, 8, Article 086101 pp. (2015)
[32] Edelbauer, W., Numerical simulation of cavitating injector flow and liquid spray break-up by combination of Eulerian-Eulerian and volume-of-fluid methods, Comput. Fluids, 144, 19-33 (2017) · Zbl 1390.76865
[33] Mithun, M.-G.; Koukouvinis, P.; Gavaises, M., Numerical simulation of cavitation and atomization using a fully compressible three-phase model, Phys. Rev. Fluids, 3, Article 064304 pp. (2018)
[34] Quan, S.; Lou, J.; Schmidt, D., Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations, J. Comput. Phys., 228 (2009) · Zbl 1275.76174
[35] Altimira, M.; Fuchs, L., Numerical investigation of throttle flow under cavitating conditions, Int. J. Multiph. Flow, 75, 124-136 (2015)
[36] He, Z. X.; Shao, Z.; Zhou, Z. W.; Tao, X. C., Experimental study of hydraulic flip phenomenon inside diesel nozzles using diesel and biodiesel, (Advances in Manufacturing Science and Engineering V. Advances in Manufacturing Science and Engineering V, Advanced Materials Research, Trans Tech Publications, vol. 945 (2014)), 940-943
[37] Soteriou, C.; Andrews, R.; Smith, M., Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization (1995), SAE Int., SAE Technical Paper
[38] Soteriou, C.; Andrews, R.; Smith, M., Further studies of cavitation and atomization in diesel injection, (International Fuels & Lubricants Meeting & Exposition (1999), SAE International)
[39] Sou, A.; Hosokawa, S.; Tomiyama, A., Effects of cavitation in a nozzle on liquid jet atomization, Int. J. Heat Mass Transf., 50, 17, 3575-3582 (2007) · Zbl 1151.80313
[40] Yu, H.; Goldsworthy, L.; Brandner, P.; Garaniya, V., Development of a compressible multiphase cavitation approach for diesel spray modelling, Appl. Math. Model., 45, 705-727 (2017) · Zbl 1446.76058
[41] Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X., Large eddy simulation of a cavitating multiphase flow for liquid injection, J. Phys. Conf. Ser., 656, Article 012081 pp. (2015)
[42] Kunz, R. F.; Boger, D. A.; Stinebring, D. R.; Chyczewski, T. S.; Lindau, J. W.; Gibeling, H. J.; Venkateswaran, S.; Govindan, T., A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction, Comput. Fluids, 29, 8, 849-875 (2000) · Zbl 0972.76075
[43] Sauer, J.; Schnerr, G. H., Unsteady Cavitating Flow - A New Cavitation Model Based on A Modified Front Capturing Method And Bubble Dynamics (2000) · Zbl 0951.76578
[44] Yuan, W.; Schnerr, G. H., Numerical simulation of two-phase flow in injection nozzles: interaction of cavitation and external jet formation, J. Fluids Eng., 125, 6, 963-969 (2004)
[45] Liu, H.; Zhang, W.; Jia, M.; Yan, Y.; He, Y., An improved method for coupling the in-nozzle cavitation with multi-fluid-quasi-VoF model for diesel spray, Comput. Fluids, 177, 20-32 (2018) · Zbl 1410.76245
[46] Koukouvinis, P.; Naseri, H.; Gavaises, M., Performance of turbulence and cavitation models in prediction of incipient and developed cavitation, Int. J. Eng. Res., 18, 4, 333-350 (2017)
[47] Duret, B.; Canu, R.; Reveillon, J.; Demoulin, F., A pressure based method for vaporizing compressible two-phase flows with interface capturing approach, Int. J. Multiph. Flow, 108, 42-50 (2018)
[48] Egerer, C. P.; Schmidt, S. J.; Hickel, S.; Adams, N. A., Efficient implicit LES method for the simulation of turbulent cavitating flows, J. Comput. Phys., 316, 453-469 (2016) · Zbl 1349.76116
[49] Lauer, E.; Hu, X.; Hickel, S.; Adams, N., Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics, Comput. Fluids, 69, 1-19 (2012) · Zbl 1365.76231
[50] Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) · Zbl 1273.76276
[51] Klostermann, J.; Schaake, K.; Schwarze, R., Numerical simulation of a single rising bubble by VoF with surface compression, Int. J. Numer. Methods Fluids, 71, 8, 960-982 (2013) · Zbl 1430.76119
[52] Sou, A.; Biçer, B.; Tomiyama, A., Numerical simulation of incipient cavitation flow in a nozzle of fuel injector, Comput. Fluids, 103, 42-48 (2014)
[53] The OpenFOAM Foundation, OpenFOAM user guide
[54] Issa, R., Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 1, 40-65 (1986) · Zbl 0619.76024
[55] Weller, H., A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow (2008), OpenCFD Ltd., Technical report TR/HGW/04
[56] Yuan, W.; Sauer, J.; Schnerr, G. H., Modeling and computation of unsteady cavitation flows in injection nozzles, Méc. Ind., 2, 5, 383-394 (2001)
[57] Eddy Large Simulation for Incompressible Flows (2006), Springer-Verlag
[58] Pope, S., Turbulent Flows (2000), Cambridge University Press · Zbl 0966.76002
[59] Lesieur, M.; Metais, O.; Comte, P., Large-Eddy Simulations of Turbulence (2005), Cambridge University Press · Zbl 1101.76002
[60] Hu, X.; Adams, N., Scale separation for implicit large eddy simulation, J. Comput. Phys., 230, 19, 7240-7249 (2011) · Zbl 1286.76068
[61] Knaepen, B.; Debliquy, O.; Carati, D., Large-eddy simulation without filter, J. Comput. Phys., 205, 1, 98-107 (2005) · Zbl 1087.76052
[62] Gavaises, M.; Villa, F.; Koukouvinis, P.; Marengo, M.; Franc, J.-P., Visualisation and LES simulation of cavitation cloud formation and collapse in an axisymmetric geometry, Int. J. Multiph. Flow, 68, 14-26 (2015)
[63] Bensow, R. E.; Bark, G., Implicit LES predictions of the cavitating flow on a propeller, J. Fluids Eng., 132, 4, Article 041302 pp. (2010)
[64] Luo, X.; Ji, B.; Peng, X.; Xu, H.; Nishi, M., Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation, J. Fluids Eng., 134, 4, Article 041202 pp. (2012)
[65] Chen, Y.; Chen, X.; Li, J.; Gong, Z.; Lu, C., Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3d twisted hydrofoil, Ocean Eng., 129, 1-19 (2017)
[66] Huang, B.; Zhao, Y.; Wang, G., Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows, Comput. Fluids, 92, 113-124 (2014) · Zbl 1391.76417
[67] Ji, B.; Luo, X.; Arndt, R. E.; Peng, X.; Wu, Y., Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil, Int. J. Multiph. Flow, 68, 121-134 (2015)
[68] Reboud, J.; Stutz, B.; Coutier, O., Two-phase flow structure of cavitation: experiments and modelling of unsteady effects, (3rd International Symposium on Cavitation. 3rd International Symposium on Cavitation, April 1998, Grenoble, France (1998))
[69] Coutier-Delgosha, O.; Fortes-Patella, R.; Reboud, J. L., Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation, J. Fluids Eng., 125, 1, 38 (2003)
[70] Huang, B.; Ducoin, A.; Young, Y. L., Physical and numerical investigation of cavitating flows around a pitching hydrofoil, Phys. Fluids, 25, 10, Article 102109 pp. (2013)
[71] Huang, B.; Young, Y. L.; Wang, G.; Shyy, W., Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation, J. Fluids Eng., 135, 7, Article 071301 pp. (2013)
[72] Long, Y.; ping Long, X.; Ji, B.; xin Huai, W.; dong Qian, Z., Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil, J. Hydrodyn. Ser. B, 29, 4, 610-620 (2017)
[73] Hirt, C.; Nichols, B., Volume of fluid (VoF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225 (1981) · Zbl 0462.76020
[74] Section, W. T.-F.; Weller, H. G., The Development of a New Flame Area Combustion Model Using Conditional Averaging (1993)
[75] Wardle, K. E.; Weller, H. G., Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction, Int. J. Chem. Eng., 2013, 1-13 (2013), article ID 128936
[76] Baraldi, A.; Dodd, M.; Ferrante, A., A mass-conserving volume-of-fluid method: volume tracking and droplet surface-tension in incompressible isotropic turbulence, Comput. Fluids, 96, 322-337 (2014) · Zbl 1391.76159
[77] Bothe, D.; Fleckenstein, S., A volume-of-fluid-based method for mass transfer processes at fluid particles, Chem. Eng. Sci., 101, 283-302 (2013)
[78] Fleckenstein, S.; Bothe, D., A volume-of-fluid-based numerical method for multi-component mass transfer with local volume changes, J. Comput. Phys., 301, 35-58 (2015) · Zbl 1349.76843
[79] Weiner, A.; Bothe, D., Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles, J. Comput. Phys., 347, 261-289 (2017) · Zbl 1380.76072
[80] Spalding, D., A Method for Computing Steady and Unsteady Flows Possessing Discontinuities of Density (1974), Cham report 910/2
[81] Schnerr, G. H.; Sauer, J., Physical and numerical modeling of unsteady cavitation dynamics, (ICMF-2001, 4th International Conference on Multiphase Flow (2001)) · Zbl 1002.76009
[82] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 2, 335-354 (1992) · Zbl 0775.76110
[83] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 16, 5838-5866 (2009) · Zbl 1280.76020
[84] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 2, 423-456 (1999) · Zbl 0954.76063
[85] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[86] Popinet, S.; Zaleski, S., Int. J. Numer. Methods Fluids, 30, 6, 775-793 (1999) · Zbl 0940.76047
[87] Abu-Al-Saud, M. O.; Popinet, S.; Tchelepi, H. A., A conservative and well-balanced surface tension model, J. Comput. Phys., 371, 896-913 (2018) · Zbl 1415.76494
[88] Sussman, M.; Smith, K.; Hussaini, M.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 221, 2, 469-505 (2007) · Zbl 1194.76219
[89] Desjardins, O.; Moureau, V.; Pitsch, H., An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys., 227, 18, 8395-8416 (2008) · Zbl 1256.76051
[90] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J. Comput. Phys., 210, 1, 225-246 (2005) · Zbl 1154.76368
[91] Houim, R. W.; Kuo, K. K., A ghost fluid method for compressible reacting flows with phase change, J. Comput. Phys., 235, 865-900 (2013)
[92] Vincent, S.; Larocque, J.; Lacanette, D.; Toutant, A.; Lubin, P.; Sagaut, P., Numerical simulation of phase separation and a priori two-phase LES filtering, Special Issue of the “Turbulence and Interaction-TI2006” Conference. Special Issue of the “Turbulence and Interaction-TI2006” Conference, Comput. Fluids, 37, 7, 898-906 (2008) · Zbl 1143.76468
[93] Toutant, A.; Labourasse, E.; Lebaigue, O.; Simonin, O., DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: a priori tests for LES two-phase flow modelling, Special Issue of the “Turbulence and Interaction-TI2006” Conference. Special Issue of the “Turbulence and Interaction-TI2006” Conference, Comput. Fluids, 37, 7, 877-886 (2008) · Zbl 1143.76466
[94] Labourasse, E.; Lacanette, D.; Toutant, A.; Lubin, P.; Vincent, S.; Lebaigue, O.; Caltagirone, J.-P.; Sagaut, P., Towards large eddy simulation of isothermal two-phase flows: governing equations and a priori tests, Int. J. Multiph. Flow, 33, 1, 1-39 (2007)
[95] Herrmann, M., A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics, Comput. Fluids, 87, 92-101 (2013), uSNCCM Moving Boundaries · Zbl 1290.76112
[96] Liovic, P.; Lakehal, D., Subgrid-scale modelling of surface tension within interface tracking-based large eddy and interface simulation of 3d interfacial flows, Comput. Fluids, 63, 27-46 (2012) · Zbl 1365.76091
[97] Aniszewski, W.; Bogusławski, A.; Marek, M.; Tyliszczak, A., A new approach to sub-grid surface tension for LES of two-phase flows, J. Comput. Phys., 231, 21, 7368-7397 (2012) · Zbl 1284.76284
[98] Aniszewski, W., Improvements, testing and development of the ADM-τ sub-grid surface tension model for two-phase LES, J. Comput. Phys., 327, 389-415 (2016) · Zbl 1373.76055
[99] Toutant, A.; Labourasse, E.; Lebaigue, O.; Simonin, O., Interaction between a deformable buoyant bubble and a homogeneous isotropic turbulence, (Conference on Turbulence and Interactions TI2006. Conference on Turbulence and Interactions TI2006, May 29-June 2, 2006, Porquerolles, France (2006)) · Zbl 1143.76466
[100] Denaro, F. M., What does finite volume-based implicit filtering really resolve in large-eddy simulations?, J. Comput. Phys., 230, 10, 3849-3883 (2011) · Zbl 1369.76019
[101] Lee, S. B., A study on temporal accuracy of OpenFOAM, Int. J. Nav. Archit. Ocean Eng., 9, 4, 429-438 (2017)
[102] Martínez, J.; Piscaglia, F.; Montorfano, A.; Onorati, A.; Aithal, S., Influence of spatial discretization schemes on accuracy of explicit LES: canonical problems to engine-like geometries, Comput. Fluids, 117, 62-78 (2015) · Zbl 1390.76193
[103] Piscaglia, F.; Montorfano, A.; Onorati, A., Development of a non-reflecting boundary condition for multidimensional nonlinear duct acoustic computation, J. Sound Vib., 332, 4, 922-935 (2013)
[104] Brennen, C., Cavitation and Bubble Dynamics, Cavitation and Bubble Dynamics (2013), Cambridge University Press · Zbl 1302.76002
[105] D’Agostino, L.; Green, S. I., Simultaneous cavitation susceptibility meter and holographic measurements of nuclei in liquids, J. Fluids Eng., 114, 2, 261-267 (1992)
[106] Washio, S., 1 - review of cavitation nuclei, (Washio, S., Recent Developments in Cavitation Mechanisms (2014), Woodhead Publishing), 1-44
[107] Singhal, A. K.; Athavale, M. M.; Li, H.; Jiang, Y., Mathematical basis and validation of the full cavitation model, J. Fluids Eng., 124, 3, 617 (2002)
[108] Nicoud, F.; Ducros, F., Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow Turbul. Combust., 62, 183-200 (1999) · Zbl 0980.76036
[109] LeVeque, R. J., Numerical Methods for Conservation Laws, Lectures in Mathematics (2007), ETH: ETH Zurich
[110] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 135, 2, 260-278 (1997) · Zbl 0890.65096
[111] Boris, J.; Book, D., Solution of continuity equations by the method of flux-corrected transport, (Killeen, J., Controlled Fusion. Controlled Fusion, Methods in Computational Physics: Advances in Research and Applications, vol. 16 (1976), Elsevier), 85-129
[112] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[113] Biçer, B.; Sou, A., Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle, Appl. Math. Model., 40, 7, 4712-4726 (2016) · Zbl 07159906
[114] Piscaglia, F.; Giussani, F.; Montorfano, A.; Hélie, J.; Aithal, S., A MultiPhase Dynamic-VoF solver to model primary jet atomization and cavitation inside high-pressure fuel injectors in OpenFOAM, Acta Astronaut. (2019)
[115] Clift, R., Bubbles, Drops, and Particles (Dover Civil and Mechanical Engineering) (2005), Dover Publications
[116] Wadell, H., Sphericity and roundness of rock particles, J. Geol., 41, 3, 310-331 (1933)
[117] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[118] Turek, S., Efficient Solvers for Incompressible Flow Problems, An Algorithmic and Computational Approach, Lecture Notes in Computational Science and Engineering, vol. 6 (1999), Springer: Springer Berlin · Zbl 0930.76002
[119] Parolini, N.; Burman, E., A finite element level set method for viscous free-surface flows, (Applied and Industrial Mathematics in Italy. Applied and Industrial Mathematics in Italy, Proceedings of SIMAI 2004 (2005), World Scientific: World Scientific Singapore), 417-427 · Zbl 1229.76057
[120] John, V.; Matthies, G., MooNMD - a program package based on mapped finite element methods, Comput. Vis. Sci., 9, 1179-1195 (2004) · Zbl 1061.65124
[121] Physical aspects of the relaxation model in two-phase flow, Proc. R. Soc., Math. Phys. Eng. Sci., 428, 1875, 379-397 (1990) · Zbl 0701.76108
[122] Downar-Zapolski, P.; Bilicki, Z.; Bolle, L.; Franco, J., The non-equilibrium relaxation model for one-dimensional flashing liquid flow, Int. J. Multiph. Flow, 22, 3, 473-483 (1996) · Zbl 1135.76405
[123] Neroorkar, K.; Shields, B.; Grover, R. O.; Plazas Torres, A.; Schmidt, D., Application of the homogeneous relaxation model to simulating cavitating flow of a diesel fuel, (SAE 2012 World Congress & Exhibition (2012), SAE International)
[124] Winklhofer, E.; Kull, E.; Kelz, E.; Morozov, A., Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions, (ILASS 2001, 17th European Conference on Liquid Atomization and Spray Systems. ILASS 2001, 17th European Conference on Liquid Atomization and Spray Systems, Zurich, Switzerland (2001))
[125] Brusiani, F.; Negro, S.; Bianchi, G. M.; Moulai, M.; Neroorkar, K.; Schmidt, D., Comparison of the homogeneous relaxation model and a Rayleigh Plesset cavitation model in predicting the cavitating flow through various injector hole shapes, (SAE 2013 World Congress & Exhibition (2013), SAE International)
[126] Reitz, R. D., Atomization and Other Breakup Regimes of a Liquid Jet (1978), Princeton Univ.: Princeton Univ. NJ, Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.