×

Frequency boundary of fractional order systems with nonlinear uncertainties. (English) Zbl 1392.93035

Summary: This paper proposes a method to compute frequency boundaries of fractional order control systems with nonlinear uncertainty structures that include and guarantee the Bode and Nyquist envelopes. Then, a lag-lead compensator is designed based on the frequency boundary to provide desired gain and phase specifications. Two types of nonlinear uncertainty structures, namely polynomial and general uncertainties, have been concerned in illustrative examples to explain computing process clearly.

MSC:

93C80 Frequency-response methods in control theory
93C41 Control/observation systems with incomplete information
93C10 Nonlinear systems in control theory

Software:

CRONE; Ninteger
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Matusu, R.; Prokop, R., Graphical analysis of robust stability for systems with parametric uncertainty: an overview, Transactions of the Institute of Measurement and Control, 33, 2, 274-290, (2011)
[2] Yeroglu, C.; Ozyetkin, M. M.; Tan, N., Frequency response computation of fractional order ınterval transfer functions, International Journal of Control Automation and Systems, 8, 5, 1009-1017, (2010)
[3] Dubravska, M.; Harsanyi, L., Control of uncertain systems, Journal of Electrical Engineering, 58, 4, 228-231, (2007)
[4] B. Senol, C. Yeroglu, Robust Stability Analysis of Fractional Order Uncertain Polynomials, Fractional Differentiation and its Applications 2012 (FDA12), Nanjing, China, 2012.
[5] R. Matusu, R. Prokop, V. Vasek, Robust stability analysis for polynomials with nonlinear uncertainty structures, in: Proceedings of 17th International Conference DAAAM, Vienna, 2006.
[6] D. Henrion, Course on Polynomial methods for robust control [online]. Merida, Venezuela, 2013 http://homepages.laas.fr/henrion/, [last accessed 4 January 2013].
[7] Podlubny, I., Fractional-order systems and PI^{λ}D^{μ} controllers, IEEE Transactions on Automatic Control, 44, 1, 208-214, (1999) · Zbl 1056.93542
[8] Wu, X.; Li, J.; Chen, G., Chaos in the fractional order unified system and its synchronization, Journal of the Franklin Institute, 345, 4, 392-401, (2008) · Zbl 1166.34030
[9] Jumarie, G., Fractional multiple birth-death processes with birth probabilities λ_{i}(δt)+o((δt)^{α}), Journal of the Franklin Institute, 347, 10, 1797-1813, (2010) · Zbl 1225.60141
[10] Zeng, L.; Cheng, P.; Wang, L.; Yong, W., Robust stability analysis for a class of FOS with uncertain parameters, Journal of the Franklin Institute, 348, 6, 1101-1113, (2011) · Zbl 1222.93171
[11] Li, C.; Wang, J., Robust stability and stabilization of fractional order interval systems with coupling relationships: the 0<α<1 case, Journal of the Franklin Institute, 349, 7, 2406-2419, (2012) · Zbl 1287.93063
[12] Jiao, Z; Chen, Y. Q.; Zhong, Y., Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders, Computers & Mathematics with Applications, 64, 3053-3058, (2012) · Zbl 1268.34018
[13] Yeroglu, C.; Tan, N., Note on fractional-order proportional-integral-differential controller design, Control Theory and Applications- IET, 5, Issue 17, 1978-1989, (2011), November
[14] Podlubny, I.; Petraš, I.; Vinagre, B. M.; P. O′leary; Dorčák, L., Analogue realizations of fractional-order controllers, Nonlinear Dynamics, 29, 1, 281-296, (2002) · Zbl 1041.93022
[15] Y. Q. Chen, I. Petras, D. Xue, Fractional order control: a tutorial, in: Proceedings of the 2009 American Control Conference (ACC′09), 2009, pp. 1397-1411.
[16] Ma, C.; Hori, Y., Fractional-order control: theory and applications in motion control, IEEE Industrial Electronics Magazine, 6-16, (2007)
[17] Nataraj, P. S.V.; Kalla, R., Computation of frequency responses for uncertain fractional-order systems, International Journal of Automation and Control, 4, 2, 201-217, (2010)
[18] Nataraj, P. S.V.; Kalla, R., Computation of stability margins for uncertain linear fractional-order systems, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 132, 1, 1-6, (2010)
[19] Tan, N.; Ozguven, Ö. F.; Ozyetkin, M. M., Robust stability analysis of fractional order interval polynomials, ISA Transactions, 48, 166-172, (2009)
[20] Nieto, J. J.; Pimentel, J., Positive solutions of a fractional thermostat model, Boundary Value Problems, 5, (2013) · Zbl 1280.35166
[21] Ahmad, B.; Nieto, J. J.; Alsaedi, A.; El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Analysis Real World Applications, 13, 599-606, (2012) · Zbl 1238.34008
[22] Tang, Y.; Zhang, X.; Zhang, D.; Zhao, G.; Guan, X., Fractional order sliding mode controller design for antilock braking systems, Neurocomputing, 111, 122-130, (2013)
[23] B. Senol, C. Yeroglu, M. Erturkler, Development of a User Friendly Toolbox for Advanced Control Education, Fractional Differentiation and its Applications 2012 (FDA12), Nanjing, China, 2012.
[24] D. Valerio, Ninteger v. 2.3 Frac. Cont. toolbox for Matlab, http://web.ist.utl.pt/ duarte, Valerio, 2005.
[25] Oustaloup, A.; Melchior, P.; Lanusse, P.; Cois, O.; Dancla, F., The CRONE toolbox for Matlab, (2000), Lab. d′Automatique et de Productique, Bordeaux I Univ. Talence
[26] C. Martin, S. Miloš, PID Controller Design on Internet: 〈www.PIDlab.com〉. Department of Cybernetics, University of West Bohemia, 2006.
[27] Åström, K. J.; Hägglund, T., PID controllers: theory, design and tuning, (1995), Instrument Society of America North Carolina
[28] Bhattacharyya, S. P.; Chapellat, H.; Keel, L. H., Robust control: the parametric approach, (1995), Prentice Hall · Zbl 0838.93008
[29] Tan, N., Computation of stabilizing PI-PD controllers, International Journal of Control Automation and Systems, 7, 2, 175-184, (2009)
[30] Yeroglu, C.; Tan, N., Classical controller design techniques for fractional order case, ISA Transactions, 50, Issue 3, 461-472, (2011), July
[31] B. Senol, C. Yeroğlu, 2q-Konveks Parpoligon Yaklaşımını Kullanarak Kesir Dereceli Affine Belirsizlik Yapısındaki Sistemlerin Nyquist Zarflarının Elde Edilmesi, (Nyquist Envelopes of Systems with Affine Linear Uncertainty Using 2q-Convex Parpolygonal Approach), Otomatik Kontrol Ulusal Toplantısı, TOK12, Niğde, Turkey, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.