Li, Huiyuan; Fang, Jian-an; Li, Xiaofan; Huang, Tingwen Impulse-based coupling synchronization of multiple discrete-time memristor-based neural networks with stochastic perturbations and mixed delays. (English) Zbl 07305996 J. Franklin Inst. 358, No. 1, 980-1001 (2021). MSC: 93D99 93B70 93C27 93C55 93C73 93C43 PDF BibTeX XML Cite \textit{H. Li} et al., J. Franklin Inst. 358, No. 1, 980--1001 (2021; Zbl 07305996) Full Text: DOI
Qiu, Wanzheng; Wang, JinRong; O’Regan, Donal Existence and Ulam stability of solutions for conformable impulsive differential equations. (English) Zbl 07290383 Bull. Iran. Math. Soc. 46, No. 6, 1613-1637 (2020). MSC: 34A08 34A30 34A37 34D10 PDF BibTeX XML Cite \textit{W. Qiu} et al., Bull. Iran. Math. Soc. 46, No. 6, 1613--1637 (2020; Zbl 07290383) Full Text: DOI
Ren, Hongwei; Shi, Peng; Deng, Feiqi; Peng, Yunjian Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control. (English) Zbl 07289750 J. Franklin Inst. 357, No. 17, 12308-12325 (2020). MSC: 93E15 93B70 93C27 93C73 93C43 PDF BibTeX XML Cite \textit{H. Ren} et al., J. Franklin Inst. 357, No. 17, 12308--12325 (2020; Zbl 07289750) Full Text: DOI
Ding, Yuanlin; Fečkan, Michal; Wang, Jinrong Stability for conformable impulsive differential equations. (English) Zbl 07288635 Electron. J. Differ. Equ. 2020, Paper No. 118, 19 p. (2020). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 34A37 34A08 34D20 34D10 PDF BibTeX XML Cite \textit{Y. Ding} et al., Electron. J. Differ. Equ. 2020, Paper No. 118, 19 p. (2020; Zbl 07288635) Full Text: Link
Samoilenko, I. V.; Nikitin, A. V.; Dovhai, B. V. Asymptotic dissipativity for merged stochastic evolutionary systems with Markov switchings and impulse perturbations under conditions of Lévy approximation. (English. Russian original) Zbl 07285095 Cybern. Syst. Anal. 56, No. 3, 392-400 (2020); translation from Kibern. Sist. Anal. 2020, No. 3, 60-69 (2020). MSC: 93E03 93C73 93C27 93C15 60H10 PDF BibTeX XML Cite \textit{I. V. Samoilenko} et al., Cybern. Syst. Anal. 56, No. 3, 392--400 (2020; Zbl 07285095); translation from Kibern. Sist. Anal. 2020, No. 3, 60--69 (2020) Full Text: DOI
Yasmin, Nusrat; Mirza, Safia; Younus, Awais; Mansoor, Asif Controllability and observability of linear impulsive adjoint dynamic system on time scale. (English) Zbl 07274243 Tamkang J. Math. 51, No. 3, 201-217 (2020). MSC: 93B05 93B07 93C27 93C70 34N05 PDF BibTeX XML Cite \textit{N. Yasmin} et al., Tamkang J. Math. 51, No. 3, 201--217 (2020; Zbl 07274243) Full Text: DOI
Zhang, Jinsen; Chen, Wu-Hua; Lu, Xiaomei Robust fuzzy stabilization of nonlinear time-delay systems subject to impulsive perturbations. (English) Zbl 1451.93289 Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104953, 13 p. (2020). MSC: 93D09 93D23 93C42 93C43 93C27 93C73 93C10 PDF BibTeX XML Cite \textit{J. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104953, 13 p. (2020; Zbl 1451.93289) Full Text: DOI
Bohner, Martin; Stamov, Gani Tr.; Stamova, Ivanka M. Almost periodic solutions of Cohen-Grossberg neural networks with time-varying delay and variable impulsive perturbations. (English) Zbl 07262787 Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104952, 14 p. (2020). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 34K14 34K45 92B20 34K20 PDF BibTeX XML Cite \textit{M. Bohner} et al., Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104952, 14 p. (2020; Zbl 07262787) Full Text: DOI
Ashordia, Malkhaz; Kharshiladze, Nato On the solvability of the modified Cauchy problem for linear systems of impulsive differential equations with singularities. (English) Zbl 07254883 Miskolc Math. Notes 21, No. 1, 69-79 (2020). MSC: 34A12 34A30 34A37 34K26 PDF BibTeX XML Cite \textit{M. Ashordia} and \textit{N. Kharshiladze}, Miskolc Math. Notes 21, No. 1, 69--79 (2020; Zbl 07254883) Full Text: DOI
Yang, Dan; Li, Xiaodi; Liu, Zhongmin; Cao, Jinde Persistence of nonautonomous logistic system with time-varying delays and impulsive perturbations. (English) Zbl 07249217 Nonlinear Anal., Model. Control 25, No. 4, 564-579 (2020). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34K60 37C60 34K25 34K45 92D25 PDF BibTeX XML Cite \textit{D. Yang} et al., Nonlinear Anal., Model. Control 25, No. 4, 564--579 (2020; Zbl 07249217) Full Text: DOI
Sesekin, Aleksandr Nikolaevich; Zhelonkina, Natal’ya Igor’evna On the stability of tubes of discontinuous solutions of bilinear systems with delay. (English) Zbl 1437.34076 Izv. Irkutsk. Gos. Univ., Ser. Mat. 31, 96-110 (2020). Reviewer: Alexander O. Ignatyev (Donetsk) MSC: 34K20 34K45 34K27 PDF BibTeX XML Cite \textit{A. N. Sesekin} and \textit{N. I. Zhelonkina}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 31, 96--110 (2020; Zbl 1437.34076) Full Text: DOI Link
Wang, JinRong; Li, Mengmeng; O’Regan, Donal; Fečkan, Michal Robustness for linear evolution equations with non-instantaneous impulsive effects. (English) Zbl 1436.34058 Bull. Sci. Math. 159, Article ID 102827, 47 p. (2020). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34D09 34D10 34A37 34G10 PDF BibTeX XML Cite \textit{J. Wang} et al., Bull. Sci. Math. 159, Article ID 102827, 47 p. (2020; Zbl 1436.34058) Full Text: DOI
Zou, Wencheng; Zhou, Chao; Xiang, Zhengrong Sampled-data leader-following consensus of nonlinear multi-agent systems subject to impulsive perturbations. (English) Zbl 07264510 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104884, 10 p. (2019). MSC: 68T 93A 93C PDF BibTeX XML Cite \textit{W. Zou} et al., Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104884, 10 p. (2019; Zbl 07264510) Full Text: DOI
Liu, Chao; Liu, Ming Stochastic dynamics in a nonautonomous prey-predator system with impulsive perturbations and Lévy jumps. (English) Zbl 07264480 Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104851, 17 p. (2019). MSC: 34F 92D 34D 34C PDF BibTeX XML Cite \textit{C. Liu} and \textit{M. Liu}, Commun. Nonlinear Sci. Numer. Simul. 78, Article ID 104851, 17 p. (2019; Zbl 07264480) Full Text: DOI
Guo, Yuchen; Shu, Xiaobao An investigation on the existence and Ulam stability of solution for an impulsive fractional differential equation. (English) Zbl 1449.34275 J. Math., Wuhan Univ. 39, No. 6, 835-851 (2019). MSC: 34K37 34K40 34K45 34K27 47N20 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{X. Shu}, J. Math., Wuhan Univ. 39, No. 6, 835--851 (2019; Zbl 1449.34275) Full Text: DOI
Hu, Guixin; Tian, Kuanhou On hybrid stochastic population models with impulsive perturbations. (English) Zbl 1448.92198 J. Biol. Dyn. 13, No. 1, 385-406 (2019). MSC: 92D25 34K50 34K25 PDF BibTeX XML Cite \textit{G. Hu} and \textit{K. Tian}, J. Biol. Dyn. 13, No. 1, 385--406 (2019; Zbl 1448.92198) Full Text: DOI
Niu, Yujun; Hu, Shuangnian Melnikov method of impulsive system and its application to chaos prediction. (Chinese. English summary) Zbl 1449.34049 Math. Pract. Theory 49, No. 12, 199-206 (2019). MSC: 34A37 37D45 34C28 34E10 PDF BibTeX XML Cite \textit{Y. Niu} and \textit{S. Hu}, Math. Pract. Theory 49, No. 12, 199--206 (2019; Zbl 1449.34049)
Zhang, Suxia; Dong, Hongsen; Xu, Xiaxia; Shen, Xiaoqin Analysis of a vector-borne disease model with impulsive perturbation and reinfection. (English) Zbl 07146986 J. Elliptic Parabol. Equ. 5, No. 2, 359-381 (2019). MSC: 92D30 34K27 34K45 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Elliptic Parabol. Equ. 5, No. 2, 359--381 (2019; Zbl 07146986) Full Text: DOI
Lu, Chun; Ding, Xiaohua Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations. (English) Zbl 1428.34056 Appl. Math. Comput. 350, 313-322 (2019). MSC: 34C25 92D25 34A37 34F05 49N25 PDF BibTeX XML Cite \textit{C. Lu} and \textit{X. Ding}, Appl. Math. Comput. 350, 313--322 (2019; Zbl 1428.34056) Full Text: DOI
Martynyuk, A. A.; Stamova, I. M. Stability of sets of hybrid dynamical systems with aftereffect. (English) Zbl 1435.34066 Nonlinear Anal., Hybrid Syst. 32, 106-114 (2019). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34K09 34K20 34K45 PDF BibTeX XML Cite \textit{A. A. Martynyuk} and \textit{I. M. Stamova}, Nonlinear Anal., Hybrid Syst. 32, 106--114 (2019; Zbl 1435.34066) Full Text: DOI
Kapustyan, O. V.; Romanyuk, I. V. Global attractor of an impulsive dynamical system generated by the wave equation. (English. Ukrainian original) Zbl 1414.35035 J. Math. Sci., New York 236, No. 3, 300-312 (2019); translation from Neliniĭni Kolyvannya 20, No. 3, 361-372 (2017). MSC: 35B41 35R12 35L90 PDF BibTeX XML Full Text: DOI
Shen, Jianhua; Chen, Lu; Yuan, Xiaoping Lagrange stability for impulsive Duffing equations. (English) Zbl 1416.34023 J. Differ. Equations 266, No. 11, 6924-6962 (2019). Reviewer: Anatoly Martynyuk (Kyïv) MSC: 34C11 34A37 37C27 34C15 37J40 PDF BibTeX XML Cite \textit{J. Shen} et al., J. Differ. Equations 266, No. 11, 6924--6962 (2019; Zbl 1416.34023) Full Text: DOI
Yang, Wu; Wang, Yan-Wu; Guan, Zhi-Hong; Wen, Changyun Controllability of impulsive singularly perturbed systems and its application to a class of multiplex networks. (English) Zbl 1408.93029 Nonlinear Anal., Hybrid Syst. 31, 123-134 (2019). MSC: 93B05 93C70 93C15 05C90 PDF BibTeX XML Cite \textit{W. Yang} et al., Nonlinear Anal., Hybrid Syst. 31, 123--134 (2019; Zbl 1408.93029) Full Text: DOI
Benchohra, Mouffak; Hamani, Samira; Zhou, Yong Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional differential inclusions. (English) Zbl 07031860 Adv. Difference Equ. 2019, Paper No. 74, 15 p. (2019). MSC: 26A33 34A37 34D10 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Adv. Difference Equ. 2019, Paper No. 74, 15 p. (2019; Zbl 07031860) Full Text: DOI
Wu, Yongbao; Fu, Shengxiang; Li, Wenxue Exponential synchronization for coupled complex networks with time-varying delays and stochastic perturbations via impulsive control. (English) Zbl 1405.93031 J. Franklin Inst. 356, No. 1, 492-513 (2019). MSC: 93A15 93E03 93E15 93C73 PDF BibTeX XML Cite \textit{Y. Wu} et al., J. Franklin Inst. 356, No. 1, 492--513 (2019; Zbl 1405.93031) Full Text: DOI
Zhang, Jimin; Yang, Liu; Fan, Meng; Chen, Ming Nonlinear perturbations for linear nonautonomous impulsive differential equations and nonuniform \((h,k,\mu,\nu)\)-dichotomy. (English) Zbl 07303470 J. Appl. Anal. Comput. 8, No. 4, 1085-1107 (2018). MSC: 34D09 34A37 34D10 34C45 37C60 34G20 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Appl. Anal. Comput. 8, No. 4, 1085--1107 (2018; Zbl 07303470) Full Text: DOI
Kapustyan, O. V.; Perestyuk, M. O.; Romanyuk, I. V. Stability of global attractors of impulsive infinite-dimensional systems. (English. Ukrainian original) Zbl 1427.35343 Ukr. Math. J. 70, No. 1, 30-41 (2018); translation from Ukr. Mat. Zh. 70, No. 1, 29-39 (2018). MSC: 35R12 37C75 35B25 35B41 35K91 PDF BibTeX XML Cite \textit{O. V. Kapustyan} et al., Ukr. Math. J. 70, No. 1, 30--41 (2018; Zbl 1427.35343); translation from Ukr. Mat. Zh. 70, No. 1, 29--39 (2018) Full Text: DOI
Ding, Yali Ulam-Hyers stability of fractional impulsive differential equations. (English) Zbl 1449.34274 J. Nonlinear Sci. Appl. 11, No. 8, 953-959 (2018). MSC: 34K37 34K45 34K27 PDF BibTeX XML Cite \textit{Y. Ding}, J. Nonlinear Sci. Appl. 11, No. 8, 953--959 (2018; Zbl 1449.34274) Full Text: DOI
Hu, Jingting; Sui, Guixia; Lv, Xiaoxiao; Li, Xiaodi Fixed-time control of delayed neural networks with impulsive perturbations. (English) Zbl 1416.93147 Nonlinear Anal., Model. Control 23, No. 6, 904-920 (2018). MSC: 93D05 93C23 93C73 PDF BibTeX XML Cite \textit{J. Hu} et al., Nonlinear Anal., Model. Control 23, No. 6, 904--920 (2018; Zbl 1416.93147) Full Text: DOI
Glizer, Valery Y.; Kelis, Oleg Singular infinite horizon linear-quadratic optimal control problem for systems with known disturbances: a regularization approach. (English) Zbl 1424.49038 PLISKA, Stud. Math. 29, 47-56 (2018). Reviewer: Angela Slavova (Sofia) MSC: 49N10 49K40 49N60 49N35 49N25 93C73 PDF BibTeX XML Cite \textit{V. Y. Glizer} and \textit{O. Kelis}, PLISKA, Stud. Math. 29, 47--56 (2018; Zbl 1424.49038) Full Text: Link
Chen, Lu; Shen, Jianhua Applications of the Moser’s twist theorem in an impulsive differential equation. (Chinese. English summary) Zbl 1424.34133 J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 4, 369-374 (2018). MSC: 34C27 34A37 34D20 37J40 PDF BibTeX XML Cite \textit{L. Chen} and \textit{J. Shen}, J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 4, 369--374 (2018; Zbl 1424.34133) Full Text: DOI
Shah, Kamal; Ali, Arshad; Bushnaq, Samia Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. (English) Zbl 1409.34017 Math. Methods Appl. Sci. 41, No. 17, 8329-8343 (2018). MSC: 34A08 34A09 34A37 34D10 47N20 PDF BibTeX XML Cite \textit{K. Shah} et al., Math. Methods Appl. Sci. 41, No. 17, 8329--8343 (2018; Zbl 1409.34017) Full Text: DOI
Rehman, Mutti-Ur; Anwar, M. Fazeel Computing \(\mu\)-values for representations of symmetric groups in engineering systems. (English) Zbl 1413.49046 Eur. J. Pure Appl. Math. 11, No. 3, 774-792 (2018). MSC: 49N25 15A18 20C30 PDF BibTeX XML Cite \textit{M.-U. Rehman} and \textit{M. F. Anwar}, Eur. J. Pure Appl. Math. 11, No. 3, 774--792 (2018; Zbl 1413.49046) Full Text: Link
Lu, Chun; Chen, Jian; Fan, Xingkui; Zhang, Lei Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations. (English) Zbl 1395.92131 J. Appl. Math. Comput. 57, No. 1-2, 437-465 (2018). MSC: 92D25 60H40 34K45 60H10 PDF BibTeX XML Cite \textit{C. Lu} et al., J. Appl. Math. Comput. 57, No. 1--2, 437--465 (2018; Zbl 1395.92131) Full Text: DOI
Zhang, Xian-He; Han, Guang-Song; Guan, Zhi-Hong; Li, Juan; Zhang, Ding-Xue; Liao, Rui-Quan Robust multi-tracking of heterogeneous multi-agent systems with uncertain nonlinearities and disturbances. (English) Zbl 1390.93277 J. Franklin Inst. 355, No. 8, 3677-3690 (2018). MSC: 93B35 93B17 93C10 93C73 68T42 PDF BibTeX XML Cite \textit{X.-H. Zhang} et al., J. Franklin Inst. 355, No. 8, 3677--3690 (2018; Zbl 1390.93277) Full Text: DOI
Rejeb, Jihene Ben; Morărescu, Irinel-Constantin; Girard, Antoine; Daafouz, Jamal Stability analysis of a general class of singularly perturbed linear hybrid systems. (English) Zbl 1387.93111 Automatica 90, 98-108 (2018). MSC: 93C70 93D99 93C30 93C05 PDF BibTeX XML Cite \textit{J. B. Rejeb} et al., Automatica 90, 98--108 (2018; Zbl 1387.93111) Full Text: DOI
Wang, Jinrong; Shah, Kamal; Ali, Amjad Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. (English) Zbl 1390.34030 Math. Methods Appl. Sci. 41, No. 6, 2392-2402 (2018). MSC: 34A08 34A37 34D10 34A12 PDF BibTeX XML Cite \textit{J. Wang} et al., Math. Methods Appl. Sci. 41, No. 6, 2392--2402 (2018; Zbl 1390.34030) Full Text: DOI
Banerjee, Chandrima; Das, Pritha Impulsive effect on tri-trophic food chain model with mixed functional responses under seasonal perturbations. (English) Zbl 1384.34052 Differ. Equ. Dyn. Syst. 26, No. 1-3, 157-176 (2018). MSC: 34C60 34A37 34D05 34D20 34C25 92D25 PDF BibTeX XML Cite \textit{C. Banerjee} and \textit{P. Das}, Differ. Equ. Dyn. Syst. 26, No. 1--3, 157--176 (2018; Zbl 1384.34052) Full Text: DOI
Stamov, Gani; Stamova, Ivanka Modelling and almost periodic processes in impulsive Lasota-Wazewska equations of fractional order with time-varying delays. (English) Zbl 1427.34112 Quaest. Math. 40, No. 8, 1041-1057 (2017). MSC: 34K60 34K14 34K37 34K45 92C37 34K20 PDF BibTeX XML Cite \textit{G. Stamov} and \textit{I. Stamova}, Quaest. Math. 40, No. 8, 1041--1057 (2017; Zbl 1427.34112) Full Text: DOI
Wu, Ruihua Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations. (English) Zbl 1412.34185 J. Nonlinear Sci. Appl. 10, No. 2, 436-450 (2017). MSC: 34F05 34D05 PDF BibTeX XML Cite \textit{R. Wu}, J. Nonlinear Sci. Appl. 10, No. 2, 436--450 (2017; Zbl 1412.34185) Full Text: DOI
Zhang, Lan; Yang, Xinsong; Xu, Chen; Feng, Jianwen Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control. (English) Zbl 1411.93193 Appl. Math. Comput. 306, 22-30 (2017). MSC: 93E15 34D06 34D10 34K20 34K35 34K45 34K50 92B20 PDF BibTeX XML Cite \textit{L. Zhang} et al., Appl. Math. Comput. 306, 22--30 (2017; Zbl 1411.93193) Full Text: DOI
Yang, Liu; Tian, Baodan Asymptotic properties of a stochastic nonautonomous competitive system with impulsive perturbations. (English) Zbl 1422.92134 Adv. Difference Equ. 2017, Paper No. 201, 17 p. (2017). MSC: 92D25 60H10 92D40 34K20 34K60 PDF BibTeX XML Cite \textit{L. Yang} and \textit{B. Tian}, Adv. Difference Equ. 2017, Paper No. 201, 17 p. (2017; Zbl 1422.92134) Full Text: DOI
Witayakiattilerd, Wichai PID controller singularly perturbing impulsive differential equations and optimal control problem. (English) Zbl 1401.49048 Adv. Math. Phys. 2017, Article ID 1938513, 11 p. (2017). MSC: 49N25 93C70 PDF BibTeX XML Cite \textit{W. Witayakiattilerd}, Adv. Math. Phys. 2017, Article ID 1938513, 11 p. (2017; Zbl 1401.49048) Full Text: DOI
Lu, Chun; Ma, Qiang Analysis of a stochastic Lotka-Volterra competitive model with infinite delay and impulsive perturbations. (English) Zbl 1390.34232 Taiwanese J. Math. 21, No. 6, 1413-1436 (2017). MSC: 34K60 34K45 34K50 34K25 34K20 92D25 PDF BibTeX XML Cite \textit{C. Lu} and \textit{Q. Ma}, Taiwanese J. Math. 21, No. 6, 1413--1436 (2017; Zbl 1390.34232) Full Text: DOI Euclid
Graef, John R.; Heidarkhani, Shapour; Kong, Lingju Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems. (English) Zbl 1387.34064 Differ. Equ. Appl. 9, No. 2, 195-212 (2017). MSC: 34C25 47J10 34B08 37J40 58E50 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Differ. Equ. Appl. 9, No. 2, 195--212 (2017; Zbl 1387.34064) Full Text: DOI
Akhmet, Marat; Kıvılcım, Ayşegül Non-autonomous grazing phenomenon. (English) Zbl 1384.34060 Nonlinear Dyn. 87, No. 3, 1973-1984 (2017). MSC: 34D05 34A37 34D10 PDF BibTeX XML Cite \textit{M. Akhmet} and \textit{A. Kıvılcım}, Nonlinear Dyn. 87, No. 3, 1973--1984 (2017; Zbl 1384.34060) Full Text: DOI
Sivaranjani, K.; Rakkiyappan, R. Delayed impulsive synchronization of nonlinearly coupled Markovian jumping complex dynamical networks with stochastic perturbations. (English) Zbl 1380.34034 Nonlinear Dyn. 88, No. 3, 1917-1934 (2017). MSC: 34A37 34D06 34B45 93C73 34K35 PDF BibTeX XML Cite \textit{K. Sivaranjani} and \textit{R. Rakkiyappan}, Nonlinear Dyn. 88, No. 3, 1917--1934 (2017; Zbl 1380.34034) Full Text: DOI
Li, Yanqing; Zhang, Long; Teng, Zhidong Single-species model under seasonal succession alternating between Gompertz and logistic growth and impulsive perturbations. (English) Zbl 1390.92115 GEM. Int. J. Geomath. 8, No. 2, 241-260 (2017). MSC: 92D25 34D20 34D10 PDF BibTeX XML Cite \textit{Y. Li} et al., GEM. Int. J. Geomath. 8, No. 2, 241--260 (2017; Zbl 1390.92115) Full Text: DOI
Wang, JinRong; Fečkan, Michal; Tian, Ying Stability analysis for a general class of non-instantaneous impulsive differential equations. (English) Zbl 1373.34031 Mediterr. J. Math. 14, No. 2, Paper No. 46, 21 p. (2017). Reviewer: Abdullah Özbekler (Ankara) MSC: 34A37 34D20 34D10 PDF BibTeX XML Cite \textit{J. Wang} et al., Mediterr. J. Math. 14, No. 2, Paper No. 46, 21 p. (2017; Zbl 1373.34031) Full Text: DOI
Perestyuk, M. O.; Kapustyan, O. V.; Romanyuk, I. V. Global attractor of an impulsive parabolic system. (Ukrainian. English summary) Zbl 1389.35089 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2017, No. 5, 3-7 (2017). MSC: 35B41 35B20 35K99 PDF BibTeX XML Cite \textit{M. O. Perestyuk} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2017, No. 5, 3--7 (2017; Zbl 1389.35089) Full Text: DOI
Alwan, Mohamad S. On stabilization and state estimation of impulsive singularly perturbed systems via sliding mode control. (English) Zbl 1365.34110 J. Appl. Nonlinear Dyn. 6, No. 1, 105-119 (2017). MSC: 34H15 34A37 34D15 PDF BibTeX XML Cite \textit{M. S. Alwan}, J. Appl. Nonlinear Dyn. 6, No. 1, 105--119 (2017; Zbl 1365.34110) Full Text: DOI
Xiong, Wenjun; Zhang, Dan; Cao, Jinde Impulsive synchronisation of singular hybrid coupled networks with time-varying nonlinear perturbation. (English) Zbl 1359.93028 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 2, 417-424 (2017). MSC: 93A14 93C15 93A15 93C10 93C73 PDF BibTeX XML Cite \textit{W. Xiong} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 48, No. 2, 417--424 (2017; Zbl 1359.93028) Full Text: DOI
Chen, Huaxiong; Ni, Mingkang A singular approach to a class of impulsive differential equation. (English) Zbl 07246786 J. Appl. Anal. Comput. 6, No. 4, 1195-1204 (2016). MSC: 34E05 34E20 PDF BibTeX XML Cite \textit{H. Chen} and \textit{M. Ni}, J. Appl. Anal. Comput. 6, No. 4, 1195--1204 (2016; Zbl 07246786) Full Text: DOI
Ponosov, Arkadi; Zhukovskiy, Evgeny Generalized functional differential equations: existence and uniqueness of solutions. (English) Zbl 1399.34182 Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 112, 19 p. (2016). MSC: 34K05 34K45 47H10 PDF BibTeX XML Cite \textit{A. Ponosov} and \textit{E. Zhukovskiy}, Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 112, 19 p. (2016; Zbl 1399.34182) Full Text: DOI
Xi, Leilei; Qu, Benxin; Shen, Jianhua A type of Lyapunov inequality for impulsive differential system. (Chinese. English summary) Zbl 1374.34037 J. Hangzhou Norm. Univ., Nat. Sci. 15, No. 6, 617-622 (2016). MSC: 34A37 34A40 34A30 34D10 PDF BibTeX XML Cite \textit{L. Xi} et al., J. Hangzhou Norm. Univ., Nat. Sci. 15, No. 6, 617--622 (2016; Zbl 1374.34037) Full Text: DOI
Zhang, Shuwen Dynamics of a predator-prey system with impulsive perturbations and Markovian switching. (Chinese. English summary) Zbl 1363.34307 Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 3, 569-583 (2016). MSC: 34K60 34K50 34K45 34K12 34K25 92D25 PDF BibTeX XML Cite \textit{S. Zhang}, Acta Math. Sci., Ser. A, Chin. Ed. 36, No. 3, 569--583 (2016; Zbl 1363.34307)
Wang, Chao; Agarwal, Ravi P.; O’Regan, Donal Matrix measure on time scales and almost periodic analysis of the impulsive Lasota-Wazewska model with patch structure and forced perturbations. (English) Zbl 1355.34127 Math. Methods Appl. Sci. 39, No. 18, 5651-5669 (2016). MSC: 34N05 34K37 34K20 34K45 34K14 PDF BibTeX XML Cite \textit{C. Wang} et al., Math. Methods Appl. Sci. 39, No. 18, 5651--5669 (2016; Zbl 1355.34127) Full Text: DOI
Golin’ko, S. I.; Slyn’ko, V. I. Influence of the system of forces on the stability of impulsive mechanical gyroscopic systems. (English. Russian original) Zbl 1348.70053 Int. Appl. Mech. 52, No. 3, 301-314 (2016); translation from Prikl. Mekh., Kiev 52, No. 3, 105-120 (2016). MSC: 70K20 70K28 70K65 70E05 PDF BibTeX XML Cite \textit{S. I. Golin'ko} and \textit{V. I. Slyn'ko}, Int. Appl. Mech. 52, No. 3, 301--314 (2016; Zbl 1348.70053); translation from Prikl. Mekh., Kiev 52, No. 3, 105--120 (2016) Full Text: DOI
Tang, Shuhong; Zada, Akbar; Faisal, Shah; El-Sheikh, M. M. A.; Li, Tongxing Stability of higher-order nonlinear impulsive differential equations. (English) Zbl 1350.34022 J. Nonlinear Sci. Appl. 9, No. 6, 4713-4721 (2016). MSC: 34A37 34D10 PDF BibTeX XML Cite \textit{S. Tang} et al., J. Nonlinear Sci. Appl. 9, No. 6, 4713--4721 (2016; Zbl 1350.34022) Full Text: DOI Link
Gao, Lijun; Cai, Yingying Finite-time stability of time-delay switched systems with delayed impulse effects. (English) Zbl 1345.93118 Circuits Syst. Signal Process. 35, No. 9, 3135-3151 (2016). MSC: 93D05 93C30 93C10 93C73 PDF BibTeX XML Cite \textit{L. Gao} and \textit{Y. Cai}, Circuits Syst. Signal Process. 35, No. 9, 3135--3151 (2016; Zbl 1345.93118) Full Text: DOI
Lee, Liming; Kou, Kit Ian; Zhang, Wentao; Liang, Jinling; Liu, Yang Robust finite-time boundedness of multi-agent systems subject to parametric uncertainties and disturbances. (English) Zbl 1345.93009 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 47, No. 10, 2466-2474 (2016). MSC: 93A14 68T42 93C73 93C41 PDF BibTeX XML Cite \textit{L. Lee} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 47, No. 10, 2466--2474 (2016; Zbl 1345.93009) Full Text: DOI
Liu, Xinzhi; Zhang, Kexue Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses. (English) Zbl 1344.93071 Automatica 72, 147-152 (2016). MSC: 93C70 93D05 93A14 PDF BibTeX XML Cite \textit{X. Liu} and \textit{K. Zhang}, Automatica 72, 147--152 (2016; Zbl 1344.93071) Full Text: DOI
Li, Xue-song; Huang, Nan-jing; O’Regan, Donal A class of impulsive differential variational inequalities in finite dimensional spaces. (English) Zbl 1344.49012 J. Franklin Inst. 353, No. 13, 3151-3175 (2016). MSC: 49J40 49N25 93C73 PDF BibTeX XML Cite \textit{X.-s. Li} et al., J. Franklin Inst. 353, No. 13, 3151--3175 (2016; Zbl 1344.49012) Full Text: DOI
Ma, Tiedong; Lewis, Frank L.; Song, Yongduan Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances. (English) Zbl 1342.93011 Int. J. Robust Nonlinear Control 26, No. 8, 1615-1631 (2016). MSC: 93A14 93C10 68T42 93C70 93D05 PDF BibTeX XML Cite \textit{T. Ma} et al., Int. J. Robust Nonlinear Control 26, No. 8, 1615--1631 (2016; Zbl 1342.93011) Full Text: DOI
Tian, Baodan; Zhong, Shouming; Liu, Zhijun Extinction and persistence of a nonautonomous stochastic food-chain system with impulsive perturbations. (English) Zbl 1347.34077 Int. J. Biomath. 9, No. 5, Article ID 1650077, 26 p. (2016). MSC: 34C60 34F05 60H10 92D25 34A37 34D05 PDF BibTeX XML Cite \textit{B. Tian} et al., Int. J. Biomath. 9, No. 5, Article ID 1650077, 26 p. (2016; Zbl 1347.34077) Full Text: DOI
Wang, Ai-feng; Xu, Mei; Ni, Ming-kang The impulsive solution for a semi-linear singularly perturbed differential-difference equation. (English) Zbl 1342.34099 Acta Math. Appl. Sin., Engl. Ser. 32, No. 2, 333-342 (2016). MSC: 34K26 34K20 34E05 PDF BibTeX XML Cite \textit{A.-f. Wang} et al., Acta Math. Appl. Sin., Engl. Ser. 32, No. 2, 333--342 (2016; Zbl 1342.34099) Full Text: DOI
Heidarkhani, Shapour; Ferrara, Massimiliano; Salari, Amjad; Caristi, Giuseppe Multiple solutions for a class of perturbed second-order differential equations with impulses. (English) Zbl 1348.34060 Bound. Value Probl. 2016, Paper No. 74, 16 p. (2016). MSC: 34B37 34D10 58E50 PDF BibTeX XML Cite \textit{S. Heidarkhani} et al., Bound. Value Probl. 2016, Paper No. 74, 16 p. (2016; Zbl 1348.34060) Full Text: DOI
Yang, Xinsong; Cao, Jinde; Qiu, Jianlong \(p\)th moment exponential stochastic synchronization of coupled memristor-based neural networks with mixed delays via delayed impulsive control. (English) Zbl 1398.34121 Neural Netw. 65, 80-91 (2015). MSC: 34K50 34K35 34K45 92B20 34K25 PDF BibTeX XML Cite \textit{X. Yang} et al., Neural Netw. 65, 80--91 (2015; Zbl 1398.34121) Full Text: DOI
Wang, Jinrong; Lin, Zeng; Zhou, Yong On the stability of new impulsive ordinary differential equations. (English) Zbl 1365.34028 Topol. Methods Nonlinear Anal. 46, No. 1, 303-314 (2015). MSC: 34A37 34D10 47N20 PDF BibTeX XML Cite \textit{J. Wang} et al., Topol. Methods Nonlinear Anal. 46, No. 1, 303--314 (2015; Zbl 1365.34028) Full Text: DOI
Safa, Ali Tehrani; Alasty, Aria; Naraghi, Mahyar A different switching surface stabilizing an existing unstable periodic gait: an analysis based on perturbation theory. (English) Zbl 1348.93200 Nonlinear Dyn. 81, No. 4, 2127-2140 (2015). MSC: 93C85 34A37 93B05 93C10 93C73 PDF BibTeX XML Cite \textit{A. T. Safa} et al., Nonlinear Dyn. 81, No. 4, 2127--2140 (2015; Zbl 1348.93200) Full Text: DOI
Zhang, Wei; Li, Chuandong; Huang, Tingwen; Qi, Jiangtao Global stability and synchronization of Markovian switching neural networks with stochastic perturbation and impulsive delay. (English) Zbl 1341.93107 Circuits Syst. Signal Process. 34, No. 8, 2457-2474 (2015). MSC: 93E15 60J75 93C73 PDF BibTeX XML Cite \textit{W. Zhang} et al., Circuits Syst. Signal Process. 34, No. 8, 2457--2474 (2015; Zbl 1341.93107) Full Text: DOI
Abbas, Mohamed I. Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions. (English) Zbl 1338.34010 J. Contemp. Math. Anal., Armen. Acad. Sci. 50, No. 5, 209-219 (2015) and Izv. Nats. Akad. Nauk Armen., Mat. 50, No. 5, 34-51 (2015). MSC: 34A08 34B15 34D10 34A37 34B10 47N20 PDF BibTeX XML Cite \textit{M. I. Abbas}, J. Contemp. Math. Anal., Armen. Acad. Sci. 50, No. 5, 209--219 (2015; Zbl 1338.34010) Full Text: DOI
Asrorov, F. A. Integral sets of discontinuous dynamical systems. (Ukrainian. English summary) Zbl 1340.34161 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2015, No. 2, 51-54 (2015). MSC: 34C45 34D35 34A37 34C46 34D10 34A36 PDF BibTeX XML Cite \textit{F. A. Asrorov}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2015, No. 2, 51--54 (2015; Zbl 1340.34161)
Li, Xiaodi; Caraballo, T.; Rakkiyappan, R.; Han, Xiuping On the stability of impulsive functional differential equations with infinite delays. (English) Zbl 1334.34163 Math. Methods Appl. Sci. 38, No. 14, 3130-3140 (2015). Reviewer: Alexander O. Ignatyev (Donetsk) MSC: 34K20 34K45 34K27 PDF BibTeX XML Cite \textit{X. Li} et al., Math. Methods Appl. Sci. 38, No. 14, 3130--3140 (2015; Zbl 1334.34163) Full Text: DOI
Li, Xiaodi; Shen, Jianhua; Akca, Haydar; Rakkiyappan, R. LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter. (English) Zbl 1328.34068 Appl. Math. Comput. 250, 798-804 (2015). MSC: 34K20 34D15 93D05 93C70 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Comput. 250, 798--804 (2015; Zbl 1328.34068) Full Text: DOI
Yu, Xiulan; Wang, Jinrong; Zhang, Yuruo On the \(\beta\)-Ulam-Hyers-Rassias stability of nonautonomous impulsive evolution equations. (English) Zbl 1321.34075 J. Appl. Math. Comput. 48, No. 1-2, 461-475 (2015). Reviewer: Qi Wang (Hefei) MSC: 34D10 34G20 37C60 34A37 PDF BibTeX XML Cite \textit{X. Yu} et al., J. Appl. Math. Comput. 48, No. 1--2, 461--475 (2015; Zbl 1321.34075) Full Text: DOI
Wang, JinRong; Lin, Zeng A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability. (English) Zbl 1369.34072 Math. Methods Appl. Sci. 38, No. 5, 868-880 (2015). MSC: 34D10 34A37 37C60 47N20 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Z. Lin}, Math. Methods Appl. Sci. 38, No. 5, 868--880 (2015; Zbl 1369.34072) Full Text: DOI
Xu, Honglei; Zhou, Guanglu; Caccetta, Louis; Teo, Kok Lay Uniform stability of stochastic impulsive systems: a new comparison method. (English) Zbl 1308.93214 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 22, No. 1, 43-52 (2015). MSC: 93E15 93D20 93C73 93C55 PDF BibTeX XML Cite \textit{H. Xu} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 22, No. 1, 43--52 (2015; Zbl 1308.93214) Full Text: Link
Chalishajar, D. N.; Karthikeyan, K.; Anguraj, A. Existence results for impulsive perturbed partial neutral functional differential equations in Fréchet spaces. (English) Zbl 1323.34088 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22, No. 1, 25-45 (2015). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 34K30 34K45 34K40 47N20 35R10 34K27 PDF BibTeX XML Cite \textit{D. N. Chalishajar} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22, No. 1, 25--45 (2015; Zbl 1323.34088) Full Text: Link Link
Xu, Xiaohui; Yin, Xiaofeng; Zhang, Jiye; Wang, Peng Stability of infinite dimensional interconnected systems with impulsive and stochastic disturbances. (English) Zbl 1406.93081 Abstr. Appl. Anal. 2014, Article ID 471481, 14 p. (2014). MSC: 93B12 93D05 93C73 PDF BibTeX XML Cite \textit{X. Xu} et al., Abstr. Appl. Anal. 2014, Article ID 471481, 14 p. (2014; Zbl 1406.93081) Full Text: DOI
Zheng, Cheng-De; Wang, Yan; Wang, Zhanshan Stability analysis of stochastic fuzzy Markovian jumping neural networks with leakage delay under impulsive perturbations. (English) Zbl 1395.93498 J. Franklin Inst. 351, No. 3, 1728-1755 (2014). MSC: 93D20 93E15 60J75 93C42 68T05 93C73 PDF BibTeX XML Cite \textit{C.-D. Zheng} et al., J. Franklin Inst. 351, No. 3, 1728--1755 (2014; Zbl 1395.93498) Full Text: DOI
Liu, Zhijun; Wang, Qinglong An almost periodic competitive system subject to impulsive perturbations. (English) Zbl 1410.92105 Appl. Math. Comput. 231, 377-385 (2014). MSC: 92D25 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{Q. Wang}, Appl. Math. Comput. 231, 377--385 (2014; Zbl 1410.92105) Full Text: DOI
Zhang, Hong; Georgescu, Paul Periodic oscillations and bifurcation analysis for a Cohen-Grossberg neural network model with impulsive perturbations. (English) Zbl 1389.92009 Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 60(64), No. 3, 75-96 (2014). MSC: 92B20 35B32 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{P. Georgescu}, Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 60(64), No. 3, 75--96 (2014; Zbl 1389.92009)
Syed Ali, M. Robust stability of stochastic fuzzy impulsive recurrent neural networks with time-varying delays. (English) Zbl 1339.93118 Iran. J. Fuzzy Syst. 11, No. 4, 1-13 (2014). MSC: 93E15 93C42 93D09 93D20 93C70 92B20 PDF BibTeX XML Cite \textit{M. Syed Ali}, Iran. J. Fuzzy Syst. 11, No. 4, 1--13 (2014; Zbl 1339.93118) Full Text: Link
Du, Zengji; Xu, Min Positive periodic solutions of \(n\)-species neutral delayed Lotka-Volterra competition system with impulsive perturbations. (English) Zbl 1335.92075 Appl. Math. Comput. 243, 379-391 (2014). MSC: 92D25 PDF BibTeX XML Cite \textit{Z. Du} and \textit{M. Xu}, Appl. Math. Comput. 243, 379--391 (2014; Zbl 1335.92075) Full Text: DOI
Wang, Jinrong; Fečkan, Michal; Zhou, Yong On the stability of first order impulsive evolution equations. (English) Zbl 1331.34126 Opusc. Math. 34, No. 3, 639-657 (2014). MSC: 34G20 34D10 45N05 34A37 PDF BibTeX XML Cite \textit{J. Wang} et al., Opusc. Math. 34, No. 3, 639--657 (2014; Zbl 1331.34126) Full Text: DOI
Zhang, Hong; Georgescu, Paul Finite-time control of impulsive hybrid dynamical systems in pest management. (English) Zbl 1321.34083 Math. Methods Appl. Sci. 37, No. 17, 2728-2738 (2014). MSC: 34H05 34A37 34D20 92D25 92D40 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{P. Georgescu}, Math. Methods Appl. Sci. 37, No. 17, 2728--2738 (2014; Zbl 1321.34083) Full Text: DOI
Asrorov, F. A. The perturbation of integral set of nonlinear impulsive system. (Ukrainian. English summary) Zbl 1324.34092 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2014, No. 3, 17-21 (2014). MSC: 34C45 34D35 34A37 34C46 34D10 PDF BibTeX XML Cite \textit{F. A. Asrorov}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2014, No. 3, 17--21 (2014; Zbl 1324.34092)
Klevchuk, I. I. Integral manifolds and decompositions of linear impulsive singularly perturbed systems with delay. (Ukrainian. English summary) Zbl 1324.34141 Bukovyn. Mat. Zh. 2, No. 4, 70-73 (2014). MSC: 34K19 34K26 34K45 34K06 PDF BibTeX XML Cite \textit{I. I. Klevchuk}, Bukovyn. Mat. Zh. 2, No. 4, 70--73 (2014; Zbl 1324.34141)
Wu, Ruihua; Zou, Xiaoling; Wang, Ke Asymptotic properties of a stochastic Lotka-Volterra cooperative system with impulsive perturbations. (English) Zbl 1314.92151 Nonlinear Dyn. 77, No. 3, 807-817 (2014). MSC: 92D25 34D05 34C11 34F05 PDF BibTeX XML Cite \textit{R. Wu} et al., Nonlinear Dyn. 77, No. 3, 807--817 (2014; Zbl 1314.92151) Full Text: DOI
Wang, Weiping; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian Synchronization control of memristor-based recurrent neural networks with perturbations. (English) Zbl 1307.93038 Neural Netw. 53, 8-14 (2014). MSC: 93A14 92B20 93C70 93C15 PDF BibTeX XML Cite \textit{W. Wang} et al., Neural Netw. 53, 8--14 (2014; Zbl 1307.93038) Full Text: DOI
Wang, Yijing; Shi, Xiaomeng; Zuo, Zhiqiang; Liu, Yuhua; Chen, Michael Z. Q. Finite-time stability analysis of impulsive discrete-time switched systems with nonlinear perturbation. (English) Zbl 1308.93182 Int. J. Control 87, No. 11, 2365-2371 (2014). MSC: 93D09 93C30 93C10 93C73 93C55 PDF BibTeX XML Cite \textit{Y. Wang} et al., Int. J. Control 87, No. 11, 2365--2371 (2014; Zbl 1308.93182) Full Text: DOI
Zheng, G.; Orlov, Y.; Perruquetti, W.; Richard, J.-P. Finite-time-observer design for nonlinear impulsive systems with impact perturbation. (English) Zbl 1308.93049 Int. J. Control 87, No. 10, 2097-2105 (2014). MSC: 93B07 93C10 93C73 34B37 PDF BibTeX XML Cite \textit{G. Zheng} et al., Int. J. Control 87, No. 10, 2097--2105 (2014; Zbl 1308.93049) Full Text: DOI
Liao, Yumei; Wang, Jinrong A note on stability of impulsive differential equations. (English) Zbl 1322.34024 Bound. Value Probl. 2014, Paper No. 67, 8 p. (2014). Reviewer: Alexander O. Ignatyev (Donetsk) MSC: 34A37 34D10 PDF BibTeX XML Cite \textit{Y. Liao} and \textit{J. Wang}, Bound. Value Probl. 2014, Paper No. 67, 8 p. (2014; Zbl 1322.34024) Full Text: DOI
Akhmet, Marat; Fen, Mehmet Onur Chaotification of impulsive systems by perturbations. (English) Zbl 1296.34108 Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 6, Article ID 1450078, 16 p. (2014). MSC: 34C28 34A37 34D10 34H10 PDF BibTeX XML Cite \textit{M. Akhmet} and \textit{M. O. Fen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 24, No. 6, Article ID 1450078, 16 p. (2014; Zbl 1296.34108) Full Text: DOI
Liu, Xinzhi; Stechlinski, Peter Hybrid control of impulsive systems with distributed delays. (English) Zbl 1291.93273 Nonlinear Anal., Hybrid Syst. 11, 57-70 (2014). MSC: 93D20 93C30 93C73 PDF BibTeX XML Cite \textit{X. Liu} and \textit{P. Stechlinski}, Nonlinear Anal., Hybrid Syst. 11, 57--70 (2014; Zbl 1291.93273) Full Text: DOI
Ellouze, Imen Practical observer for impulsive systems. (English) Zbl 1316.93029 J. Korean Math. Soc. 51, No. 1, 99-111 (2014). Reviewer: Lubomír Bakule (Praha) MSC: 93B07 93D15 93C73 34A37 93B52 34H05 PDF BibTeX XML Cite \textit{I. Ellouze}, J. Korean Math. Soc. 51, No. 1, 99--111 (2014; Zbl 1316.93029) Full Text: DOI Link
Wang, Lianwen; Liu, Zhijun Analysis of a periodic impulsive predator-prey system with disease in the prey. (English) Zbl 1397.92606 J. Appl. Math. 2013, Article ID 656920, 13 p. (2013). MSC: 92D25 92D40 34C60 34A37 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Z. Liu}, J. Appl. Math. 2013, Article ID 656920, 13 p. (2013; Zbl 1397.92606) Full Text: DOI
Xiong, Peiying; Huang, Lihong On \(p\)th moment exponential stability of stochastic fuzzy cellular neural networks with time-varying delays and impulses. (English) Zbl 1390.34216 Adv. Difference Equ. 2013, Paper No. 172, 11 p. (2013). MSC: 34K20 34K50 34K36 34A37 PDF BibTeX XML Cite \textit{P. Xiong} and \textit{L. Huang}, Adv. Difference Equ. 2013, Paper No. 172, 11 p. (2013; Zbl 1390.34216) Full Text: DOI
Liu, Meng; Wang, Ke Asymptotic behavior of a stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations. (English) Zbl 1305.60046 Math. Comput. Modelling 57, No. 3-4, 909-925 (2013). MSC: 60H10 92D25 34F05 34A37 34D05 PDF BibTeX XML Cite \textit{M. Liu} and \textit{K. Wang}, Math. Comput. Modelling 57, No. 3--4, 909--925 (2013; Zbl 1305.60046) Full Text: DOI