Bonotto, E. M.; Bortolan, M. C.; Caraballo, T.; Collegari, R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. (English) Zbl 07307369 J. Dyn. Differ. Equations 33, No. 1, 463-487 (2021). MSC: 35B41 34A37 35R12 PDF BibTeX XML Cite \textit{E. M. Bonotto} et al., J. Dyn. Differ. Equations 33, No. 1, 463--487 (2021; Zbl 07307369) Full Text: DOI
Kadari, Halima; Nieto, Juan J.; Ouahab, Abdelghani; Oumansour, Abderrahamane Existence of solutions for implicit impulsive differential systems with coupled nonlocal conditions. (English) Zbl 07312924 Int. J. Difference Equ. 15, No. 2, 429-451 (2020). MSC: 34A07 34B37 47H30 PDF BibTeX XML Cite \textit{H. Kadari} et al., Int. J. Difference Equ. 15, No. 2, 429--451 (2020; Zbl 07312924) Full Text: Link
Khrustalev, M. M.; Tsarkov, K. A. Sufficient conditions for terminal invariance of stochastic jump diffusion systems. (English. Russian original) Zbl 07312183 Autom. Remote Control 81, No. 11, 2062-2077 (2020); translation from Avtom. Telemekh. 2020, No. 11, 155-173 (2020). MSC: 93E03 93C10 93C27 60J74 PDF BibTeX XML Cite \textit{M. M. Khrustalev} and \textit{K. A. Tsarkov}, Autom. Remote Control 81, No. 11, 2062--2077 (2020; Zbl 07312183); translation from Avtom. Telemekh. 2020, No. 11, 155--173 (2020) Full Text: DOI
Alsarori, Nawal A.; Ghadle, Kirtiwant P. Nonlocal fractional differential inclusions with impulse effects and delay. (English) Zbl 07307931 J. Korean Soc. Ind. Appl. Math. 24, No. 2, 229-242 (2020). MSC: 34K30 34K09 34K45 47N20 PDF BibTeX XML Cite \textit{N. A. Alsarori} and \textit{K. P. Ghadle}, J. Korean Soc. Ind. Appl. Math. 24, No. 2, 229--242 (2020; Zbl 07307931) Full Text: DOI
Nadeem, Mohd; Dabas, Jaydev Solvability of fractional order semi-linear stochastic impulsive differential equation with state-dependent delay. (English) Zbl 07291465 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 3, 411-419 (2020). MSC: 34K37 34K30 34K45 34K50 34K43 47N20 PDF BibTeX XML Cite \textit{M. Nadeem} and \textit{J. Dabas}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 3, 411--419 (2020; Zbl 07291465) Full Text: DOI
Briat, C. Stability and \(L_1 \times \ell_1\)-to-\(L_1 \times \ell_1\) performance analysis of uncertain impulsive linear positive systems with applications to the interval observation of impulsive and switched systems with constant delays. (English) Zbl 07290314 Int. J. Control 93, No. 11, 2634-2652 (2020). MSC: 93D05 93C41 93C27 93C05 93C28 93C30 93C43 PDF BibTeX XML Cite \textit{C. Briat}, Int. J. Control 93, No. 11, 2634--2652 (2020; Zbl 07290314) Full Text: DOI
Min, Dandan; Chen, Fangqi Three solutions for a class of fractional impulsive advection-dispersion equations with Sturm-Liouville boundary conditions via variational approach. (English) Zbl 07279041 Math. Methods Appl. Sci. 43, No. 15, 9151-9168 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34A08 34B09 34B24 34B37 47J30 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, Math. Methods Appl. Sci. 43, No. 15, 9151--9168 (2020; Zbl 07279041) Full Text: DOI
Koval’chuk, T. V.; Mohyl’ova, V. V.; Shovkoplyas, T. V. Averaging method in problems of optimal control over impulsive systems. (English. Ukrainian original) Zbl 07253494 J. Math. Sci., New York 247, No. 2, 314-327 (2020); translation from Neliniĭni Kolyvannya 22, No. 1, 86-97 (2019). MSC: 49N25 49K15 34 PDF BibTeX XML Full Text: DOI
Karthikeyan, R.; Arul, R. Uniqueness and stability results for non-local impulsive implicit Hadamard fractional differential equations. (English) Zbl 1441.34010 J. Appl. Nonlinear Dyn. 9, No. 1, 23-29 (2020). MSC: 34A08 34A37 PDF BibTeX XML Cite \textit{R. Karthikeyan} and \textit{R. Arul}, J. Appl. Nonlinear Dyn. 9, No. 1, 23--29 (2020; Zbl 1441.34010) Full Text: DOI
Mardanov, M. J.; Sharifov, Y. A.; Sardarova, R. A.; Aliyev, H. N. Existence and uniqueness of solutions for nonlinear impulsive differential equations with three-point and integral boundary conditions. (English) Zbl 1452.34039 Azerb. J. Math. 10, No. 1, 110-126 (2020). MSC: 34B37 34B10 34A37 34B27 47N20 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Azerb. J. Math. 10, No. 1, 110--126 (2020; Zbl 1452.34039) Full Text: Link
Dhayal, Rajesh; Malik, Muslim; Abbas, Syed; Debbouche, Amar Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses. (English) Zbl 1448.49034 Math. Methods Appl. Sci. 43, No. 7, 4107-4124 (2020). Reviewer: Hector Jasso (Ciudad de México) MSC: 49K45 49N25 37L55 47D09 65C30 60G22 PDF BibTeX XML Cite \textit{R. Dhayal} et al., Math. Methods Appl. Sci. 43, No. 7, 4107--4124 (2020; Zbl 1448.49034) Full Text: DOI
Perninge, Magnus A finite horizon optimal switching problem with memory and application to controlled SDDEs. (English) Zbl 1448.49040 Math. Methods Oper. Res. 91, No. 3, 465-500 (2020). Reviewer: Hector Jasso (Ciudad de México) MSC: 49N25 49K21 60G40 62P20 PDF BibTeX XML Cite \textit{M. Perninge}, Math. Methods Oper. Res. 91, No. 3, 465--500 (2020; Zbl 1448.49040) Full Text: DOI
Li, Linna; Yu, Changjun; Zhang, Ning; Bai, Yanqin; Gao, Zhiyuan A time-scaling technique for time-delay switched systems. (English) Zbl 1439.49042 Discrete Contin. Dyn. Syst., Ser. S 13, No. 6, 1825-1843 (2020). MSC: 49K21 49N25 PDF BibTeX XML Cite \textit{L. Li} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 6, 1825--1843 (2020; Zbl 1439.49042) Full Text: DOI
Pogodaev, Nikolay; Staritsyn, Maxim Impulsive control of nonlocal transport equations. (English) Zbl 1439.49062 J. Differ. Equations 269, No. 4, 3585-3623 (2020). MSC: 49N25 49Q22 49K15 49K20 49J45 93C20 PDF BibTeX XML Cite \textit{N. Pogodaev} and \textit{M. Staritsyn}, J. Differ. Equations 269, No. 4, 3585--3623 (2020; Zbl 1439.49062) Full Text: DOI
Samsonyuk, Olga N. Optimality conditions for optimal impulsive control problems with multipoint state constraints. (English) Zbl 1437.49049 J. Glob. Optim. 76, No. 3, 625-644 (2020). MSC: 49N25 49K21 PDF BibTeX XML Cite \textit{O. N. Samsonyuk}, J. Glob. Optim. 76, No. 3, 625--644 (2020; Zbl 1437.49049) Full Text: DOI
Kolumbán, József J. Control at a distance of the motion of a rigid body immersed in a two-dimensional viscous incompressible fluid. (English) Zbl 1437.35579 J. Differ. Equations 269, No. 1, 764-831 (2020). MSC: 35Q35 76D05 74F10 35C20 93B05 93C20 76D10 PDF BibTeX XML Cite \textit{J. J. Kolumbán}, J. Differ. Equations 269, No. 1, 764--831 (2020; Zbl 1437.35579) Full Text: DOI
Bortolan, Matheus C.; Uzal, José Manuel Pullback attractors to impulsive evolution processes: applications to differential equations and tube conditions. (English) Zbl 1441.37085 Discrete Contin. Dyn. Syst. 40, No. 5, 2791-2826 (2020). Reviewer: Linfang Liu (Xi’an) MSC: 37L05 37L30 35Q30 PDF BibTeX XML Cite \textit{M. C. Bortolan} and \textit{J. M. Uzal}, Discrete Contin. Dyn. Syst. 40, No. 5, 2791--2826 (2020; Zbl 1441.37085) Full Text: DOI
Soledad Aronna, M.; Motta, Monica; Rampazzo, Franco A higher-order maximum principle for impulsive optimal control problems. (English) Zbl 1436.49046 SIAM J. Control Optim. 58, No. 2, 814-844 (2020). MSC: 49N25 49K15 PDF BibTeX XML Cite \textit{M. Soledad Aronna} et al., SIAM J. Control Optim. 58, No. 2, 814--844 (2020; Zbl 1436.49046) Full Text: DOI
Duan, Yueliang; Wang, Lijuan Minimal norm control problem governed by semilinear heat equation with impulse control. (English) Zbl 1434.49029 J. Optim. Theory Appl. 184, No. 2, 400-418 (2020). Reviewer: Wei Gong (Beijing) MSC: 49N25 49K15 49K20 49J20 93C20 PDF BibTeX XML Cite \textit{Y. Duan} and \textit{L. Wang}, J. Optim. Theory Appl. 184, No. 2, 400--418 (2020; Zbl 1434.49029) Full Text: DOI
Ashordia, Malkhaz The initial problem for linear systems of generalized ordinary differential equations, linear impulsive and ordinary differential systems. Numerical solvability. (English) Zbl 07286080 Mem. Differ. Equ. Math. Phys. 78, 1-162 (2019). MSC: 34A06 34A12 34A30 34A37 34D20 65L05 PDF BibTeX XML Cite \textit{M. Ashordia}, Mem. Differ. Equ. Math. Phys. 78, 1--162 (2019; Zbl 07286080) Full Text: Link
Luo, Yan; Xie, Wenzhe Existence of solutions for impulsive differential inclusions with upper and lower solutions in the reverse order. (Chinese. English summary) Zbl 1449.34058 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1055-1063 (2019). MSC: 34A60 34A37 34B15 47N20 PDF BibTeX XML Cite \textit{Y. Luo} and \textit{W. Xie}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 5, 1055--1063 (2019; Zbl 1449.34058)
Aissani, Khalida; Benchohra, Mouffak; Benkhettou, Nadia On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses. (English) Zbl 1446.34093 Cubo 21, No. 1, 61-75 (2019). MSC: 34K30 34K37 34K45 45J99 47N20 PDF BibTeX XML Cite \textit{K. Aissani} et al., Cubo 21, No. 1, 61--75 (2019; Zbl 1446.34093) Full Text: DOI
Maltugueva, Nadezhda; Pogodaev, Nikolay; Samsonyuk, Olga Optimality conditions and numerical algorithms for hybrid control systems. (English) Zbl 1441.93135 Khachay, Michael (ed.) et al., Mathematical optimization theory and operations research. 18th international conference, MOTOR 2019, Ekaterinburg, Russia, July 8–12, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11548, 474-488 (2019). MSC: 93C30 93C15 49K15 93C27 PDF BibTeX XML Cite \textit{N. Maltugueva} et al., Lect. Notes Comput. Sci. 11548, 474--488 (2019; Zbl 1441.93135) Full Text: DOI
Mardanov, Misir J.; Sharifov, Yagub A.; Zeynalli, Farah M. Existence and uniqueness of the solutions to impulsive nonlinear integro-differential equations with nonlocal boundary conditions. (English) Zbl 1445.45015 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 2, 222-233 (2019). MSC: 45J05 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 45, No. 2, 222--233 (2019; Zbl 1445.45015) Full Text: Link
Ahmed, N. U. A class of nonlinear evolution equations on Banach spaces driven by finitely additive measures and its optimal control. (English) Zbl 1445.34090 Nonlinear Funct. Anal. Appl. 24, No. 4, 837-864 (2019). MSC: 34G20 34A06 34A37 49J27 49K27 93C25 PDF BibTeX XML Cite \textit{N. U. Ahmed}, Nonlinear Funct. Anal. Appl. 24, No. 4, 837--864 (2019; Zbl 1445.34090)
Zheng, Fengxia; Xiao, Weizhong; Xie, Maosen On the theorem for a generalized concave operator in differential equations involving a fractional order and impulsive boundary conditions. (Chinese. English summary) Zbl 1449.34103 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 3, 263-267 (2019). MSC: 34B37 34A08 47N20 PDF BibTeX XML Cite \textit{F. Zheng} et al., J. Yunnan Minzu Univ., Nat. Sci. 28, No. 3, 263--267 (2019; Zbl 1449.34103) Full Text: DOI
Zheng, Fengxia; He, Cong; Tang, Yuping A criterion for the existence and uniqueness of solution involving fractional order and impulsive boundary conditions. (Chinese. English summary) Zbl 1449.34102 J. Inn. Mong. Norm. Univ., Nat. Sci. 48, No. 4, 368-372 (2019). MSC: 34B37 34A08 47N20 PDF BibTeX XML Cite \textit{F. Zheng} et al., J. Inn. Mong. Norm. Univ., Nat. Sci. 48, No. 4, 368--372 (2019; Zbl 1449.34102) Full Text: DOI
Wang, JinRong; Ibrahim, Gamal; O’Regan, Donal Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions. (English) Zbl 1439.34015 Nonlinear Anal., Model. Control 24, No. 6, 958-984 (2019). MSC: 34A08 34B10 34A37 34G20 93B05 34H05 PDF BibTeX XML Cite \textit{J. Wang} et al., Nonlinear Anal., Model. Control 24, No. 6, 958--984 (2019; Zbl 1439.34015) Full Text: DOI
Diop, Mamadou Abdoul; Dieye, Moustapha; Hmoyed, Hasna; Ezzinbi, Khalil On the existence of mild solutions for nonlocal impulsive partial integrodifferential equations in Banach spaces. (English) Zbl 1436.34068 Matematiche 74, No. 1, 13-34 (2019). Reviewer: Panagiotis Koumantos (Athens) MSC: 34K30 34K45 45K05 47N20 PDF BibTeX XML Cite \textit{M. A. Diop} et al., Matematiche 74, No. 1, 13--34 (2019; Zbl 1436.34068) Full Text: DOI
Duan, Yueliang; Wang, Lijuan; Zhang, Can Minimal time impulse control of an evolution equation. (English) Zbl 1430.49035 J. Optim. Theory Appl. 183, No. 3, 902-919 (2019). MSC: 49N25 49K30 PDF BibTeX XML Cite \textit{Y. Duan} et al., J. Optim. Theory Appl. 183, No. 3, 902--919 (2019; Zbl 1430.49035) Full Text: DOI
Bairamov, Elgiz; Cebesoy, Serifenur; Erdal, Ibrahim Difference equations with a point interaction. (English) Zbl 1428.39007 Math. Methods Appl. Sci. 42, No. 16, 5498-5508 (2019). MSC: 39A12 34B37 34L05 34L25 39A10 58C40 65Q10 PDF BibTeX XML Cite \textit{E. Bairamov} et al., Math. Methods Appl. Sci. 42, No. 16, 5498--5508 (2019; Zbl 1428.39007) Full Text: DOI
Bohner, Martin; Cebesoy, Serifenur Spectral analysis of an impulsive quantum difference operator. (English) Zbl 1428.39028 Math. Methods Appl. Sci. 42, No. 16, 5331-5339 (2019). MSC: 39A70 39A13 47A75 34L05 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{S. Cebesoy}, Math. Methods Appl. Sci. 42, No. 16, 5331--5339 (2019; Zbl 1428.39028) Full Text: DOI
Sorokin, Stepan P.; Staritsyn, Maxim V. Numeric algorithm for optimal impulsive control based on feedback maximum principle. (English) Zbl 1431.49036 Optim. Lett. 13, No. 8, 1953-1967 (2019). MSC: 49N25 49M99 49N35 91B64 PDF BibTeX XML Cite \textit{S. P. Sorokin} and \textit{M. V. Staritsyn}, Optim. Lett. 13, No. 8, 1953--1967 (2019; Zbl 1431.49036) Full Text: DOI
Han, Ji; Zhang, Huaguang; Liang, Xiaodong; Wang, Rui Distributed impulsive control for heterogeneous multi-agent systems based on event-triggered scheme. (English) Zbl 1423.93017 J. Franklin Inst. 356, No. 16, 9972-9991 (2019). MSC: 93A14 68T42 93C65 93C15 PDF BibTeX XML Cite \textit{J. Han} et al., J. Franklin Inst. 356, No. 16, 9972--9991 (2019; Zbl 1423.93017) Full Text: DOI
Afrouzi, Ghasem A.; Hadjian, Armin A variational approach for boundary value problems for impulsive fractional differential equations. (English) Zbl 1426.34004 Fract. Calc. Appl. Anal. 21, No. 6, 1565-1584 (2019). MSC: 34A08 34B37 58E30 34B09 58E50 PDF BibTeX XML Cite \textit{G. A. Afrouzi} and \textit{A. Hadjian}, Fract. Calc. Appl. Anal. 21, No. 6, 1565--1584 (2019; Zbl 1426.34004) Full Text: DOI
Zeng, Chao; Wu, Chunlin; Jia, Rui Non-Lipschitz models for image restoration with impulse noise removal. (English) Zbl 1426.49037 SIAM J. Imaging Sci. 12, No. 1, 420-458 (2019). MSC: 49N25 49K30 90C26 94A08 94A12 PDF BibTeX XML Cite \textit{C. Zeng} et al., SIAM J. Imaging Sci. 12, No. 1, 420--458 (2019; Zbl 1426.49037) Full Text: DOI
Hermosilla, Cristopher; Wolenski, Peter A characteristic method for fully convex Bolza problems over arcs of bounded variation. (English) Zbl 1420.49037 SIAM J. Control Optim. 57, No. 4, 2873-2901 (2019). MSC: 49N15 49N25 49K15 PDF BibTeX XML Cite \textit{C. Hermosilla} and \textit{P. Wolenski}, SIAM J. Control Optim. 57, No. 4, 2873--2901 (2019; Zbl 1420.49037) Full Text: DOI
Samsonyuk, Olga N.; Timoshin, Sergey A. Optimal control problems with states of bounded variation and hysteresis. (English) Zbl 1417.49020 J. Glob. Optim. 74, No. 3, 565-596 (2019). MSC: 49K15 34A60 34C55 34H05 49N25 PDF BibTeX XML Cite \textit{O. N. Samsonyuk} and \textit{S. A. Timoshin}, J. Glob. Optim. 74, No. 3, 565--596 (2019; Zbl 1417.49020) Full Text: DOI
Chalishajar, Dimplekumar N.; Karthikeyan, K. Existence of mild solutions for second order nonlocal impulsive neutral evolution equations with state-dependent infinite delay. (English) Zbl 1423.34088 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 1, 53-68 (2019). Reviewer: Haydar Akca (Abu Dhabi) MSC: 34K30 47D09 34K40 34K45 34K10 PDF BibTeX XML Cite \textit{D. N. Chalishajar} and \textit{K. Karthikeyan}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 1, 53--68 (2019; Zbl 1423.34088) Full Text: Link
Yan, Zuomao; Han, Li Optimal mild solutions for a class of nonlocal multi-valued stochastic delay differential equations. (English) Zbl 1416.34063 J. Optim. Theory Appl. 181, No. 3, 1053-1075 (2019). MSC: 34K50 34K30 34A45 34K09 47N20 60H15 PDF BibTeX XML Cite \textit{Z. Yan} and \textit{L. Han}, J. Optim. Theory Appl. 181, No. 3, 1053--1075 (2019; Zbl 1416.34063) Full Text: DOI
Wang, Peiguang; Li, Chongrui; Zhang, Juan; Li, Tongxing Quasilinearization method for first-order impulsive integro-differential equations. (English) Zbl 1442.45009 Electron. J. Differ. Equ. 2019, Paper No. 46, 14 p. (2019). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 45J05 45L05 PDF BibTeX XML Cite \textit{P. Wang} et al., Electron. J. Differ. Equ. 2019, Paper No. 46, 14 p. (2019; Zbl 1442.45009) Full Text: Link
Ali, Arshad; Shah, Kamal; Jarad, Fahd; Gupta, Vidushi; Abdeljawad, Thabet Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. (English) Zbl 07040270 Adv. Difference Equ. 2019, Paper No. 101, 21 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{A. Ali} et al., Adv. Difference Equ. 2019, Paper No. 101, 21 p. (2019; Zbl 07040270) Full Text: DOI
Arutyunov, Aram; Karamzin, Dmitry; Lobo Pereira, Fernando Optimal impulsive control. The extension approach. (English) Zbl 1423.49001 Lecture Notes in Control and Information Sciences 477. Cham: Springer (ISBN 978-3-030-02259-4/hbk; 978-3-030-02260-0/ebook). xxiii, 174 p. (2019). Reviewer: Svetlana A. Kravchenko (Minsk) MSC: 49-02 49N25 49J15 49K15 49K21 PDF BibTeX XML Cite \textit{A. Arutyunov} et al., Optimal impulsive control. The extension approach. Cham: Springer (2019; Zbl 1423.49001) Full Text: DOI
Asma; Ali, Arshad; Shah, Kamal; Jarad, Fahd Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions. (English) Zbl 07012075 Adv. Difference Equ. 2019, Paper No. 7, 27 p. (2019). MSC: 26A33 34A08 34A34 PDF BibTeX XML Cite \textit{Asma} et al., Adv. Difference Equ. 2019, Paper No. 7, 27 p. (2019; Zbl 07012075) Full Text: DOI
Tewari, Ashish Optimal space flight navigation. An analytical approach. (English) Zbl 1412.49002 Control Engineering. Cham: Birkhäuser (ISBN 978-3-030-03788-8/hbk; 978-3-030-03789-5/ebook). xi, 270 p. (2019). Reviewer: Clementina Mladenova (Sofia) MSC: 49-01 49K15 49S05 70-01 70M20 PDF BibTeX XML Cite \textit{A. Tewari}, Optimal space flight navigation. An analytical approach. Cham: Birkhäuser (2019; Zbl 1412.49002) Full Text: DOI
Guechi, Sarra; Debbouche, Amar; Torres, Delfim F. M. Approximate controllability of impulsive non-local non-linear fractional dynamical systems and optimal control. (English) Zbl 07287409 Miskolc Math. Notes 19, No. 1, 255-271 (2018). MSC: 26A33 45J05 49J15 93B05 PDF BibTeX XML Cite \textit{S. Guechi} et al., Miskolc Math. Notes 19, No. 1, 255--271 (2018; Zbl 07287409) Full Text: DOI
Cho, Giphil; Jeong, Yong Dam; Kim, Sangil; Jung, Il Hyo An impulsive stage-structured optimal control problem and optimal harvest strategy of Pacific cod, Gadus microcephalus, in the South Korea. (English) Zbl 1427.49042 East Asian Math. J. 34, No. 5, 683-691 (2018). MSC: 49N25 49K15 PDF BibTeX XML Cite \textit{G. Cho} et al., East Asian Math. J. 34, No. 5, 683--691 (2018; Zbl 1427.49042) Full Text: DOI
Wang, JinRong; Ibrahim, Ahmed Gamal; O’Regan, Donal Hilfer-type fractional differential switched inclusions with noninstantaneous impulsive and nonlocal conditions. (English) Zbl 1421.34043 Nonlinear Anal., Model. Control 23, No. 6, 921-941 (2018). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G25 34A08 34A37 34A36 34B10 PDF BibTeX XML Cite \textit{J. Wang} et al., Nonlinear Anal., Model. Control 23, No. 6, 921--941 (2018; Zbl 1421.34043) Full Text: DOI
Ji, Shaochun Solutions to a class of nonlocal impulsive differential inclusions in Banach spaces. (Chinese. English summary) Zbl 1424.34215 Math. Pract. Theory 48, No. 16, 234-239 (2018). MSC: 34G25 34A37 47N20 PDF BibTeX XML Cite \textit{S. Ji}, Math. Pract. Theory 48, No. 16, 234--239 (2018; Zbl 1424.34215)
Motta, Monica; Rampazzo, Franco; Vinter, Richard Normality and gap phenomena in optimal unbounded control. (English) Zbl 1439.49061 ESAIM, Control Optim. Calc. Var. 24, No. 4, 1645-1673 (2018). Reviewer: Roman Šimon Hilscher (Brno) MSC: 49N25 34K45 49K15 PDF BibTeX XML Cite \textit{M. Motta} et al., ESAIM, Control Optim. Calc. Var. 24, No. 4, 1645--1673 (2018; Zbl 1439.49061) Full Text: DOI arXiv
Paşaoğlu Allahverdiev, Bilender; Tuna, Hüseyin Spectral expansion for the singular Dirac system with impulsive conditions. (English) Zbl 1424.34307 Turk. J. Math. 42, No. 5, 2527-2545 (2018). MSC: 34L40 34A37 34L05 34L10 PDF BibTeX XML Cite \textit{B. Paşaoğlu Allahverdiev} and \textit{H. Tuna}, Turk. J. Math. 42, No. 5, 2527--2545 (2018; Zbl 1424.34307) Full Text: DOI
Dykhta, Vladimir Aleksandrovich; Samsonyuk, Ol’ga Nikolaevna Positional minimum principle for impulsive processes. (Russian. English summary) Zbl 1409.49020 Izv. Irkutsk. Gos. Univ., Ser. Mat. 25, 46-62 (2018). MSC: 49K21 PDF BibTeX XML Cite \textit{V. A. Dykhta} and \textit{O. N. Samsonyuk}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 25, 46--62 (2018; Zbl 1409.49020) Full Text: DOI Link
Alsarori, Nawal A.; Ghadle, Kirtiwant P. On the mild solution for nonlocal impulsive fractional semilinear differential inclusion in Banach spaces. (English) Zbl 1413.34009 J. Math. Model. 6, No. 2, 239-258 (2018). MSC: 34A08 34B37 34G25 47N20 PDF BibTeX XML Cite \textit{N. A. Alsarori} and \textit{K. P. Ghadle}, J. Math. Model. 6, No. 2, 239--258 (2018; Zbl 1413.34009) Full Text: DOI
Goncharova, Elena; Staritsyn, Maxim On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. (English) Zbl 1407.49054 Discrete Contin. Dyn. Syst., Ser. S 11, No. 6, 1061-1070 (2018). MSC: 49N25 49K99 49J99 93C30 PDF BibTeX XML Cite \textit{E. Goncharova} and \textit{M. Staritsyn}, Discrete Contin. Dyn. Syst., Ser. S 11, No. 6, 1061--1070 (2018; Zbl 1407.49054) Full Text: DOI
Zhang, Di; Liang, Yue Existence and controllability of fractional evolution equation with sectorial operator and impulse. (English) Zbl 1446.34020 Adv. Difference Equ. 2018, Paper No. 219, 12 p. (2018). MSC: 34A08 26A33 34G20 34A37 93B05 34H05 PDF BibTeX XML Cite \textit{D. Zhang} and \textit{Y. Liang}, Adv. Difference Equ. 2018, Paper No. 219, 12 p. (2018; Zbl 1446.34020) Full Text: DOI
Sun, Yu; Gu, Haibo; Zhang, Yanhui; Chen, Xingru; Wang, Xingzhao Optimal controls for a class of impulsive fractional differential equations with nonlocal conditions. (English) Zbl 1445.34025 Adv. Difference Equ. 2018, Paper No. 125, 12 p. (2018). MSC: 34A08 26A33 34K45 PDF BibTeX XML Cite \textit{Y. Sun} et al., Adv. Difference Equ. 2018, Paper No. 125, 12 p. (2018; Zbl 1445.34025) Full Text: DOI
Tan, Jingjing; Zhang, Kemei; Li, Meixia Impulsive fractional differential equations with \(\mathrm{p}\)-Laplacian operator in Banach spaces. (English) Zbl 1406.34021 J. Funct. Spaces 2018, Article ID 2503915, 11 p. (2018). MSC: 34A08 34B37 34B10 47N20 PDF BibTeX XML Cite \textit{J. Tan} et al., J. Funct. Spaces 2018, Article ID 2503915, 11 p. (2018; Zbl 1406.34021) Full Text: DOI
Vijayakumar, V. Approximate controllability results for impulsive neutral differential inclusions of Sobolev-type with infinite delay. (English) Zbl 1403.93046 Int. J. Control 91, No. 10, 2366-2386 (2018). MSC: 93B05 93C15 34K40 34K45 47N70 PDF BibTeX XML Cite \textit{V. Vijayakumar}, Int. J. Control 91, No. 10, 2366--2386 (2018; Zbl 1403.93046) Full Text: DOI
Arutyunov, A. V.; Karamzin, D. Yu.; Pereira, F. L.; Chernikova, N. Yu. Second-order necessary optimality conditions in optimal impulsive control problems. (English. Russian original) Zbl 1408.49031 Differ. Equ. 54, No. 8, 1083-1101 (2018); translation from Differ. Uravn. 54, No. 8, 1100-1118 (2018). Reviewer: Hector Jasso (México D. F.) MSC: 49N25 49K99 PDF BibTeX XML Cite \textit{A. V. Arutyunov} et al., Differ. Equ. 54, No. 8, 1083--1101 (2018; Zbl 1408.49031); translation from Differ. Uravn. 54, No. 8, 1100--1118 (2018) Full Text: DOI
Shah, Vishant; George, Raju K.; Sharma, Jaita; Muthukumar, P. Existence and uniqueness of classical and mild solutions of generalized impulsive evolution equation. (English) Zbl 06987919 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 7-8, 775-780 (2018). MSC: 34A37 34G20 PDF BibTeX XML Cite \textit{V. Shah} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 7--8, 775--780 (2018; Zbl 06987919) Full Text: DOI
Nagaraj, Mahalingam; Suganya, Selvaraj; Baleanu, Dumitru; Arjunan, Mani Mallika Approximate controllability results for impulsive partial functional nonlocal integro-differential evolution systems through resolvent operators. (English) Zbl 1400.45008 Discontin. Nonlinearity Complex. 7, No. 3, 305-325 (2018). MSC: 45J05 93B05 34A37 PDF BibTeX XML Cite \textit{M. Nagaraj} et al., Discontin. Nonlinearity Complex. 7, No. 3, 305--325 (2018; Zbl 1400.45008) Full Text: DOI
Minhós, Feliz; Carapinha, Rui Half-linear impulsive problems for classical and singular \(\phi \)-Laplacian with generalized impulsive conditions. (English) Zbl 1404.34031 J. Fixed Point Theory Appl. 20, No. 3, Paper No. 117, 13 p. (2018). MSC: 34B37 34B15 47N20 PDF BibTeX XML Cite \textit{F. Minhós} and \textit{R. Carapinha}, J. Fixed Point Theory Appl. 20, No. 3, Paper No. 117, 13 p. (2018; Zbl 1404.34031) Full Text: DOI
Liu, Yuji Existence of solutions of impulsive anti-periodic type boundary value problems for singular fractional differential systems. (English) Zbl 1403.34005 Differ. Equ. Dyn. Syst. 26, No. 4, 293-313 (2018). Reviewer: Yousef Gholami (Tabriz) MSC: 34A08 34B15 34B37 34B16 PDF BibTeX XML Cite \textit{Y. Liu}, Differ. Equ. Dyn. Syst. 26, No. 4, 293--313 (2018; Zbl 1403.34005) Full Text: DOI
Ashordia, Malkhaz On the well-posedness of antiperiodic problem for systems of nonlinear impulsive equations with fixed impulses points. (English) Zbl 1398.34038 Mem. Differ. Equ. Math. Phys. 74, 153-164 (2018). MSC: 34B37 34A37 34C25 PDF BibTeX XML Cite \textit{M. Ashordia}, Mem. Differ. Equ. Math. Phys. 74, 153--164 (2018; Zbl 1398.34038) Full Text: Link
Baleanu, Dumitru; Arjunan, Mani Mallika; Nagaraj, Mahalingam; Suganya, Selvaraj Approximate controllability of second-order nonlocal impulsive functional integro-differential systems in Banach spaces. (English) Zbl 1396.93019 Bull. Korean Math. Soc. 55, No. 4, 1065-1092 (2018). MSC: 93B05 34A37 34B10 35R10 93C20 93C25 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Bull. Korean Math. Soc. 55, No. 4, 1065--1092 (2018; Zbl 1396.93019) Full Text: Link
Singhal, Sandeep; Uduman, Pattani Samsudeen Sehik Uniqueness of solution for impulsive fractional functional differential equation. (English) Zbl 1398.34115 Commun. Korean Math. Soc. 33, No. 1, 171-177 (2018). MSC: 34K37 34K30 34K45 47N20 PDF BibTeX XML Cite \textit{S. Singhal} and \textit{P. S. S. Uduman}, Commun. Korean Math. Soc. 33, No. 1, 171--177 (2018; Zbl 1398.34115) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev Existence results for class of fractional order boundary value problems with integrable impulses. (English) Zbl 1397.34135 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 4, 267-285 (2018). MSC: 34K37 34K45 34K10 47N20 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{J. Dabas}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 25, No. 4, 267--285 (2018; Zbl 1397.34135) Full Text: Link
Luo, Yan; Wang, Weibing Existence results for impulsive differential inclusions with nonlocal conditions. (English) Zbl 1396.34043 J. Fixed Point Theory Appl. 20, No. 2, Paper No. 91, 16 p. (2018). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 34A37 34B10 47H10 PDF BibTeX XML Cite \textit{Y. Luo} and \textit{W. Wang}, J. Fixed Point Theory Appl. 20, No. 2, Paper No. 91, 16 p. (2018; Zbl 1396.34043) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev; Fečkan, Michal Existence results of solutions for impulsive fractional differential equations. (English) Zbl 1394.45007 Nonauton. Dyn. Syst. 5, 35-51 (2018). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{V. Gupta} et al., Nonauton. Dyn. Syst. 5, 35--51 (2018; Zbl 1394.45007) Full Text: DOI
Cao, Ping; Yao, Dacheng Optimal drift rate control and impulse control for a stochastic inventory/production system. (English) Zbl 1391.90009 SIAM J. Control Optim. 56, No. 3, 1856-1883 (2018). MSC: 90B05 93E20 60J70 49N25 49K15 PDF BibTeX XML Cite \textit{P. Cao} and \textit{D. Yao}, SIAM J. Control Optim. 56, No. 3, 1856--1883 (2018; Zbl 1391.90009) Full Text: DOI arXiv
Vijayakumar, V.; Henríquez, Hernán R. Existence of global solutions for a class of abstract second-order nonlocal Cauchy problem with impulsive conditions in Banach spaces. (English) Zbl 1392.34071 Numer. Funct. Anal. Optim. 39, No. 6, 704-736 (2018). Reviewer: Miklavž Mastinšek (Maribor) MSC: 34G20 34B10 34A37 47D06 35R12 PDF BibTeX XML Cite \textit{V. Vijayakumar} and \textit{H. R. Henríquez}, Numer. Funct. Anal. Optim. 39, No. 6, 704--736 (2018; Zbl 1392.34071) Full Text: DOI
Gautam, Ganga Ram; Dabas, Jaydev A study on existence of solutions for fractional functional differential equations. (English) Zbl 1384.34086 Collect. Math. 69, No. 1, 25-37 (2018). MSC: 34K37 34K40 34A12 47H10 34K30 34K45 PDF BibTeX XML Cite \textit{G. R. Gautam} and \textit{J. Dabas}, Collect. Math. 69, No. 1, 25--37 (2018; Zbl 1384.34086) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev Nonlinear fractional boundary value problem with not instantaneous impulse. (English) Zbl 1431.34009 AIMS Math. 2, No. 2, 365-376 (2017). MSC: 34A08 34A37 34B37 47N20 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{J. Dabas}, AIMS Math. 2, No. 2, 365--376 (2017; Zbl 1431.34009) Full Text: DOI
Annapoorani, Natarajan Existence of solutions of abstract fractional impulsive integrodifferential equations of Sobolev type. (English) Zbl 1431.45007 Babiarz, Artur (ed.) et al., Theory and applications of non-integer order systems. Papers of the 8th conference on non-integer order calculus and its applications, Zakopane, Poland, September 20–21, 2016. Cham: Springer. Lect. Notes Electr. Eng. 407, 3-10 (2017). MSC: 45J05 34A08 PDF BibTeX XML Cite \textit{N. Annapoorani}, Lect. Notes Electr. Eng. 407, 3--10 (2017; Zbl 1431.45007) Full Text: DOI
Anguraj, Annamalai; Kanjanadevi, Subramaniam; Nieto, Juan Jose Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses. (English) Zbl 1420.34007 Nonlinear Anal., Model. Control 22, No. 6, 753-764 (2017). MSC: 34A08 34G20 34A37 47N20 PDF BibTeX XML Cite \textit{A. Anguraj} et al., Nonlinear Anal., Model. Control 22, No. 6, 753--764 (2017; Zbl 1420.34007) Full Text: DOI
Ali, Arshad; Rabiei, Faranak; Shah, Kamal On Ulam’s type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions. (English) Zbl 1412.34008 J. Nonlinear Sci. Appl. 10, No. 9, 4760-4775 (2017). MSC: 34A08 35R11 26A33 PDF BibTeX XML Cite \textit{A. Ali} et al., J. Nonlinear Sci. Appl. 10, No. 9, 4760--4775 (2017; Zbl 1412.34008) Full Text: DOI
Ji, Shaochun Mild solutions to nonlocal impulsive differential inclusions governed by a noncompact semigroup. (English) Zbl 1412.34186 J. Nonlinear Sci. Appl. 10, No. 2, 492-503 (2017). MSC: 34G10 34A60 PDF BibTeX XML Cite \textit{S. Ji}, J. Nonlinear Sci. Appl. 10, No. 2, 492--503 (2017; Zbl 1412.34186) Full Text: DOI
Guan, Yongliang; Zhao, Zengqin; Lin, Xiuli On the existence of solutions for impulsive fractional differential equations. (English) Zbl 1401.34010 Adv. Math. Phys. 2017, Article ID 1207456, 12 p. (2017). MSC: 34A08 34A37 34B37 34B10 PDF BibTeX XML Cite \textit{Y. Guan} et al., Adv. Math. Phys. 2017, Article ID 1207456, 12 p. (2017; Zbl 1401.34010) Full Text: DOI
Ashordia, Malkhaz On the well-posedness of antiperiodic problem for systems of nonlinear impulsive differential equations with fixed impulses points. (English) Zbl 1390.34070 Mem. Differ. Equ. Math. Phys. 71, 139-150 (2017). MSC: 34B37 PDF BibTeX XML Cite \textit{M. Ashordia}, Mem. Differ. Equ. Math. Phys. 71, 139--150 (2017; Zbl 1390.34070) Full Text: Link
Zeidan, Vera Constrained linear-quadratic control problems over time scales and weak normality. (English) Zbl 1388.49038 Dyn. Syst. Appl. 26, No. 3-4, 627-662 (2017). MSC: 49N10 49K15 39A12 34K35 49N25 93B05 PDF BibTeX XML Cite \textit{V. Zeidan}, Dyn. Syst. Appl. 26, No. 3--4, 627--662 (2017; Zbl 1388.49038)
Jabeen, Tahira; Agarwal, Ravi P.; O’Regan, Donal; Lupulescu, Vasile Impulsive functional differential equations with causal operators. (English) Zbl 1386.34127 Dyn. Syst. Appl. 26, No. 3-4, 411-424 (2017). MSC: 34K30 34K45 49K27 PDF BibTeX XML Cite \textit{T. Jabeen} et al., Dyn. Syst. Appl. 26, No. 3--4, 411--424 (2017; Zbl 1386.34127)
Anguraj, Annamalai; Kanjanadevi, Subramaniam Existence results for fractional neutral differential equations with nonlocal and non-instantaneous impulsive conditions. (English) Zbl 1386.34130 Nonlinear Funct. Anal. Appl. 22, No. 4, 723-747 (2017). MSC: 34K37 34K30 34K40 34K45 47N20 PDF BibTeX XML Cite \textit{A. Anguraj} and \textit{S. Kanjanadevi}, Nonlinear Funct. Anal. Appl. 22, No. 4, 723--747 (2017; Zbl 1386.34130)
Tokmak Fen, Fatma; Yaslan Karaca, Ilkay Existence of positive solutions for fourth-order impulsive integral boundary value problems on time scales. (English) Zbl 1385.34069 Math. Methods Appl. Sci. 40, No. 16, 5727-5741 (2017). MSC: 34N05 34B18 34B37 47N20 PDF BibTeX XML Cite \textit{F. Tokmak Fen} and \textit{I. Yaslan Karaca}, Math. Methods Appl. Sci. 40, No. 16, 5727--5741 (2017; Zbl 1385.34069) Full Text: DOI
Aliev, Akbar B.; Mammadhasanov, Elkhan H. Well-posedness of initial boundary value problems on longitudinal impact on a composite linear viscoelastic bar. (English) Zbl 1387.74029 Math. Methods Appl. Sci. 40, No. 14, 5380-5390 (2017). MSC: 74D05 74H20 35L15 35L51 PDF BibTeX XML Cite \textit{A. B. Aliev} and \textit{E. H. Mammadhasanov}, Math. Methods Appl. Sci. 40, No. 14, 5380--5390 (2017; Zbl 1387.74029) Full Text: DOI
Nagaraj, Mahalingam; Suganya, Selvaraj; Arjunan, Mani Mallika Approximate controllability results for nonlocal impulsive functional integro-differential systems through fractional operators. (English) Zbl 1375.34008 Nonlinear Stud. 24, No. 3, 645-668 (2017). MSC: 34A08 34A37 34G20 34K30 93B05 PDF BibTeX XML Cite \textit{M. Nagaraj} et al., Nonlinear Stud. 24, No. 3, 645--668 (2017; Zbl 1375.34008) Full Text: Link
Sivasankari, A.; Leelamani, A. Existence of mild solutions for an impulsive fractional neutral integro-differential equations with non-local conditions in Banach spaces. (English) Zbl 1375.45004 Nonlinear Stud. 24, No. 3, 603-618 (2017). MSC: 45D05 45J05 34A37 34G20 34A08 PDF BibTeX XML Cite \textit{A. Sivasankari} and \textit{A. Leelamani}, Nonlinear Stud. 24, No. 3, 603--618 (2017; Zbl 1375.45004) Full Text: Link
Leelamani, A.; Sivasankari, A. On impulsive fractional evolution integro-differential inclusions with non-local conditions. (English) Zbl 1375.34028 Nonlinear Stud. 24, No. 3, 511-526 (2017). MSC: 34A37 34G20 34A08 45J05 PDF BibTeX XML Cite \textit{A. Leelamani} and \textit{A. Sivasankari}, Nonlinear Stud. 24, No. 3, 511--526 (2017; Zbl 1375.34028) Full Text: Link
Debbouche, Amar; Antonov, Valery Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces. (English) Zbl 1374.93048 Chaos Solitons Fractals 102, 140-148 (2017). MSC: 93B05 26A33 34A60 93C10 PDF BibTeX XML Cite \textit{A. Debbouche} and \textit{V. Antonov}, Chaos Solitons Fractals 102, 140--148 (2017; Zbl 1374.93048) Full Text: DOI
Balasubramaniam, P.; Tamilalagan, P. The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators. (English) Zbl 1380.93280 J. Optim. Theory Appl. 174, No. 1, 139-155 (2017). MSC: 93E20 49J27 49K27 60H10 49N25 26A33 34A12 34A08 34K50 47H10 PDF BibTeX XML Cite \textit{P. Balasubramaniam} and \textit{P. Tamilalagan}, J. Optim. Theory Appl. 174, No. 1, 139--155 (2017; Zbl 1380.93280) Full Text: DOI
Anguraj, A.; Kanjanadevi, S.; Trujillo, Juan J. Existence of mild solutions of abstract fractional differential equations with fractional non-instantaneous impulsive conditions. (English) Zbl 1379.34055 Discontin. Nonlinearity Complex. 6, No. 2, 173-183 (2017). MSC: 34G20 34A08 47H10 34A37 34B10 PDF BibTeX XML Cite \textit{A. Anguraj} et al., Discontin. Nonlinearity Complex. 6, No. 2, 173--183 (2017; Zbl 1379.34055) Full Text: DOI
Wang, JinRong; Fečkan, Michal; Zhou, Yong Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. (English) Zbl 1387.34012 Bull. Sci. Math. 141, No. 7, 727-746 (2017). MSC: 34A08 34A36 34B10 34B37 47N20 PDF BibTeX XML Cite \textit{J. Wang} et al., Bull. Sci. Math. 141, No. 7, 727--746 (2017; Zbl 1387.34012) Full Text: DOI
Briat, Corentin Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems. (English) Zbl 1377.93127 Nonlinear Anal., Hybrid Syst. 24, 198-226 (2017). MSC: 93D15 93D05 93C05 93B52 PDF BibTeX XML Cite \textit{C. Briat}, Nonlinear Anal., Hybrid Syst. 24, 198--226 (2017; Zbl 1377.93127) Full Text: DOI arXiv
Wang, Shujun; Wu, Zhen Stochastic maximum principle for optimal control problems of forward-backward delay systems involving impulse controls. (English) Zbl 1370.93327 J. Syst. Sci. Complex. 30, No. 2, 280-306 (2017). MSC: 93E20 49K45 49N25 60H10 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Wu}, J. Syst. Sci. Complex. 30, No. 2, 280--306 (2017; Zbl 1370.93327) Full Text: DOI
Tran, Van Thang Conjugate duality and optimization over weakly efficient set. (English) Zbl 1368.90174 Acta Math. Vietnam. 42, No. 2, 337-355 (2017). MSC: 90C46 90C26 90C90 90C60 49N25 PDF BibTeX XML Cite \textit{V. T. Tran}, Acta Math. Vietnam. 42, No. 2, 337--355 (2017; Zbl 1368.90174) Full Text: DOI
Sorokin, Stepan; Staritsyn, Maxim Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. (English) Zbl 1368.49020 Numer. Algebra Control Optim. 7, No. 2, 201-210 (2017). MSC: 49K15 49K99 93C30 49N15 PDF BibTeX XML Cite \textit{S. Sorokin} and \textit{M. Staritsyn}, Numer. Algebra Control Optim. 7, No. 2, 201--210 (2017; Zbl 1368.49020) Full Text: DOI
Suganya, Selvaraj; Arjunan, Mani Mallika Existence of mild solutions for impulsive fractional integro-differential inclusions with state-dependent delay. (English) Zbl 1365.34020 Mathematics 5, No. 1, Article ID 9, 16 p. (2017). MSC: 34A08 35R12 34A60 34G20 34K05 45J05 PDF BibTeX XML Cite \textit{S. Suganya} and \textit{M. M. Arjunan}, Mathematics 5, No. 1, Article ID 9, 16 p. (2017; Zbl 1365.34020) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev Functional impulsive differential equation of order \(\alpha \in (1,2)\) with nonlocal initial and integral boundary conditions. (English) Zbl 1386.34131 Math. Methods Appl. Sci. 40, No. 7, 2409-2420 (2017). Reviewer: Xiaosong Tang (Ji’an) MSC: 34K37 34K10 34K45 47N20 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{J. Dabas}, Math. Methods Appl. Sci. 40, No. 7, 2409--2420 (2017; Zbl 1386.34131) Full Text: DOI
Wang, Minmin; Feng, Meiqiang Infinitely many singularities and denumerably many positive solutions for a second-order impulsive Neumann boundary value problem. (English) Zbl 1369.34044 Bound. Value Probl. 2017, Paper No. 50, 12 p. (2017). Reviewer: Jan Tomeček (Olomouc) MSC: 34B37 34B18 47N20 PDF BibTeX XML Cite \textit{M. Wang} and \textit{M. Feng}, Bound. Value Probl. 2017, Paper No. 50, 12 p. (2017; Zbl 1369.34044) Full Text: DOI
Hu, Tingting Nonlinear boundary value conditions and ordinary differential systems with impulsive effects. (English) Zbl 1378.34045 Bound. Value Probl. 2017, Paper No. 45, 18 p. (2017). Reviewer: Yuqiang Feng (Wuhan) MSC: 34B37 47N20 PDF BibTeX XML Cite \textit{T. Hu}, Bound. Value Probl. 2017, Paper No. 45, 18 p. (2017; Zbl 1378.34045) Full Text: DOI
Vijayakumar, V.; Murugesu, R.; Poongodi, R.; Dhanalakshmi, S. Controllability of second-order impulsive nonlocal Cauchy problem via measure of noncompactness. (English) Zbl 1360.93108 Mediterr. J. Math. 14, No. 1, Paper No. 3, 23 p. (2017). MSC: 93B05 93C15 26A33 34B10 34K09 47H10 PDF BibTeX XML Cite \textit{V. Vijayakumar} et al., Mediterr. J. Math. 14, No. 1, Paper No. 3, 23 p. (2017; Zbl 1360.93108) Full Text: DOI