×

A bending theory of thermoelastic diffusion plates based on Green-Naghdi theory. (English) Zbl 1406.74025

Summary: This article is concerned with bending plate theory for thermoelastic diffusion materials under Green-Naghdi theory. First, we present the basic equations which characterize the bending of thin thermoelastic diffusion plates for type II and III models. The theory allows for the effect of transverse shear deformation without any shear correction factor, and permits the propagation of waves at a finite speed without energy dissipation for type II model and with energy dissipation for type III model. By the semigroup theory of linear operators, we prove the well-posedness of the both models and the asymptotic behavior of the solutions of type III model. For unbounded plate of type III model, we prove that a measure associated with the thermodynamic process decays faster than an exponential of a polynomial of second degree. Finally, we investigate the impossibility of the localization in time of solutions. The main idea to prove this result is to show the uniqueness of solutions for the backward in-time problem.

MSC:

74A15 Thermodynamics in solid mechanics
74K20 Plates
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aouadi, M.; Lazzari, B.; Nibbi, R., A theory of thermoelasticity with diffusion under Green-naghdi models, Z. Angew. Math. Mech., 94, 837-852, (2014) · Zbl 1301.74014
[2] Belabed, Z.; Houari, M. S.A.; Tounsi, A.; Mahmoud, S. R.; Anwar Bég, O., An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates, Compos. Part B, 60, 274-283, (2014)
[3] Bennoun, M.; Houari, M. S.A.; Tounsi, A., A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates, Mech. Adv. Mater. Struct., 23, 423-431, (2016)
[4] Birsan, M., A bending theory of porous thermoelastic plates, J. Therm. Stress., 26, 67-90, (2003)
[5] Carrera, E.; Cinefra, M.; Fiorenzo, A., Some results on thermal stress by using unified formulation for plates and shells, J. Therm. Stress., 36, 589-625, (2013)
[6] Carrera, E.; Giunta, G.; Petrolo, M., (Beam Structures: Classical and Advanced Theories, (2011), John Wiley and Sons Ltd United States) · Zbl 1238.74001
[7] Carrera, E.; Pagani, A.; Valvano, S., Shell elements with through the thickness variable kinematics for the analysis of laminated composite and sandwich structures, Compos. Part B Eng., 111, 294-314, (2017)
[8] Chiriţă, S.; Ciarletta, M., Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua, Eur. J. Mech. A, 18, 915-933, (1999) · Zbl 0991.74037
[9] Ciarlet, P. G., Mathematical elasticity, (1988), Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam · Zbl 0648.73014
[10] Green, A. E.; Naghdi, P. M., On thermoelasticity without energy dissipation, J. Elast., 31, 189-208, (1993) · Zbl 0784.73009
[11] Green, A. E.; Naghdi, P. M., A unified procedure for construction of theories of deformable media, I. classical continuum physics, II. generalized continua, III. mixtures of interacting continua, Proc. Roy. Soc. Lond. A, 448, 335-356, (1995), 357-377, 379-388 · Zbl 0868.73013
[12] Hetnarski, R. B.; Eslami, M. R., Thermal stress-advanced theory and applications, (2009), Springer · Zbl 1165.74004
[13] Horgan, C. O.; Payne, L. E.; Wheeler, L. T., Spatial decay estimates in transient heat conduction, Quart. Appl. Math., 42, 119-127, (1984) · Zbl 0553.35037
[14] Ieşan, D.; Quintanilla, R., Thermal stresses in microstretch elastic plates, Int. J. Eng. Sci., 43, 885-907, (2005) · Zbl 1211.74146
[15] Kirchhoff, G., Uber das gleichgewicht und die bewegung einer elastischen scheibe, J. Reine Angew. Math., 40, 51-58, (1850) · ERAM 040.1086cj
[16] Lagnese, J. E.; Lions, J. L., Modelling, Analysis and Control of Thin Plates. Collection RMA, vol. 6, (1989), Masson Paris · Zbl 0662.73039
[17] Leseduarte, M. C.; Quintanilla, R., Thermal stresses in type III thermo-elastic plates, J. Therm. Stress., 29, 485-503, (2006)
[18] Mindlin, R. D., Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, J. Appl. Mech., 18, 31-38, (1951) · Zbl 0044.40101
[19] Pazy, A., Semigroups of linear operators and applications to partial differential equations, (1983), Springer-Verlag Berlin · Zbl 0516.47023
[20] Pompei, A.; Scalia, A., On the asymptotic spatial behaviour in linear thermoelasticity of materials with voids, J. Therm. Stress., 25, 183-193, (2002)
[21] Quintanilla, R., Impossibility of localization in linear thermoelasticity, Proc. R. Soc. Lond. A, 463, 3311-3322, (2007) · Zbl 1153.74013
[22] Quintanilla, R.; Straughan, B., Growth and uniqueness in thermoelasticity, Proc. R. Soc. Lond. A, 456, 1419-1429, (2000) · Zbl 0985.74018
[23] Reissner, E., On bending of elastic plates, Q. Appl. Math., 5, 55-68, (1947) · Zbl 0030.04302
[24] Tikhonov, A. N.; Samarskii, A. A., Partial differential equations of mathematical physics, (1964), HoldenDay New York · Zbl 0119.07703
[25] Tounsi, A.; Houari, M. S.A.; Benyoucef, S.; Adda Bedia, E. A., A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates, Aerosp. Sci. Tech., 24, 209-220, (2013)
[26] Zidi, M.; Tounsi, A.; Houari, M. S.A.; Bég, O. A., Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory, Aerosp. Sci. Tech., 34, 24-34, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.