×

Enhancement of blood vessels in retinal imaging using the nonsubsampled contourlet transform. (English) Zbl 1298.93056

Summary: This paper presents an enhancement method for blood vessels in retinal images based on the nonsubsampled contourlet transform (NSCT). The NSCT is a shift-invariant version of the contourlet transform built upon the nonsubsampled pyramid filter banks and the nonsubsampled directional filter banks. The proposed method uses the NSCT to decompose the input retinal image into eight directions from coarser to finer scales, and then analyzes and classifies the image pixels into three categories: vessel, uncertainty, and non-vessel pixels, according to the NSCT coefficients. Then, we modify the NSCT coefficients according to the class of each pixel using a nonlinear mapping function, and reconstruct the enhanced image from the modified NSCT coefficients. The experimental results show that the proposed method can obviously increase the contrast of retinal vessels and thus outperform other enhancement methods.

MSC:

93A30 Mathematical modelling of systems (MSC2010)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62H35 Image analysis in multivariate analysis

Software:

NSCT toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, J., & Tian, J. (2008). Retinal vessel enhancement based on directional field. In Proceedings of SPIE, 6914.
[2] Cunha A. L., Zhou J. P., Do M. N. (2006) The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Transactions on Image Processing 15(10): 3089–3101 · Zbl 05453589 · doi:10.1109/TIP.2006.877507
[3] Dippel S., Stahl M., Wiemker R., Blaffert T. (2002) Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Transactions on Medical Imaging 21(4): 343–353 · doi:10.1109/TMI.2002.1000258
[4] Do M. N., Vetterli M. (2005) The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12): 2091–2106 · Zbl 05452706 · doi:10.1109/TIP.2005.859376
[5] Farnell D. J. J., Hatfield F. N., Knox P. C., Reakes M., Parry D., Spencer S., Harding S. P. (2008) Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. Journal of the Franklin Institute 345(7): 748–765 · Zbl 1172.92359 · doi:10.1016/j.jfranklin.2008.04.009
[6] Feng P., Pan Y., Wei B., Jin W., Mi D. (2007) Enhancing retinal image by the contourlet transform. Pattern Recognition Letters 28: 516–522 · doi:10.1016/j.patrec.2006.09.007
[7] Foracchia M., Grisan E., Ruggeri A. (2005) Luminosity and contrast normalization in retinal images. Medical Image Analysis 9: 179–190 · doi:10.1016/j.media.2004.07.001
[8] Intajag, S., Tipsuwanporn, V., & Chatthai, R. (2009). Retinal image enhancement in multi-mode histogram. In Proceeding of 2009 WRI world congress on computer science and information engineering, pp. 745–749.
[9] Jafar, I., & Ying, H. (2007). Multilevel component-based histogram equalization for enhancing the quality of grayscale images. In Proceeding of IEEE international conference on electro/information technology, pp. 563–568
[10] Jain A. K. (1989) Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ · Zbl 0744.68134
[11] Kanski J. J. (1989) Clinical Ophthalmology: A Systematic Approach. Butterworth-Heinemann, London, U.K.
[12] Kim Y. T. (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics 43(1): 1–8 · doi:10.1109/30.580378
[13] Laine A., Fan J., Yang W. (1995) Wavelets for contrast enhancement of digital mammography. IEEE Transactions on Biomedical Engineering 14: 536–550
[14] Lee S. J., McCarty C. A., Taylor H. R., Keeffe J. E. (2001) Costs of mobile screening for diabetic retinopathy: A practical framework for rural populations. Australian Journal of Rural Health 8: 186–192 · doi:10.1046/j.1038-5282.2001.00356.x
[15] Liu, W., & Guo, S. (2007). Design and implementation of image enhancement based on pyramid architecture. In Proceeding of IEEE TENCON 2007, pp. 1–4.
[16] Patton N., Aslam T. M., MacGillivary T., Deary I. J., Dhillon B., Eikelboom R. H., Yogesan K., Constable I. J. (2006) Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research 25: 99–127 · doi:10.1016/j.preteyeres.2005.07.001
[17] Pizer S. M., Amburn E. P., Austin J. D., Cromartie R., Geselowitz A., Greer T., Romeny B. H., Zimmerman J. B., Zuiderveld K. (1987) Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing 39(3): 355–368 · doi:10.1016/S0734-189X(87)80186-X
[18] Shensa M. J. (1992) The discrete wavelet transform: Wedding the à trous and Mallat algorithms. IEEE Transactions on Signal Processing 40(10): 2464–2482 · Zbl 0825.94053 · doi:10.1109/78.157290
[19] Staal J. J., Abramoff M. D., Niemeijer M., Viergever M. A., van Ginneken B. (2004) Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23: 501–509 · doi:10.1109/TMI.2004.825627
[20] Stahl M., Aach T., Buzug T. M., Dippel S., Neitzel U. (1999) Noise-resistant weak-structure enhancement for digital radiography. Proceeding of SPIE Medical Imaging 3661: 1406–1417
[21] Taylor H. R., Keeffe J. E. (2001) World blindness: A 21st century perspective. The British Journal of Ophthalmology 85: 261–266 · doi:10.1136/bjo.85.3.261
[22] Van De Ville D., Blu T., Unser M. (2005) On the multidimensional extension of the quincunx subsampling matrix. IEEE Signal Processing Letters 12(2): 112–115 · doi:10.1109/LSP.2004.839697
[23] Vuylsteke P., Schoeters E. (1994) Multiscale image contrast amplification (MUSICATM). Proceeding of SPIE Image Processing 2167: 551–560
[24] Wang Y., Chen Q., Zhang B. M. (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics 45(1): 68–75 · doi:10.1109/30.754419
[25] Zhang Q., Guo B. (2009) Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing 89: 1334–1346 · Zbl 1178.94035 · doi:10.1016/j.sigpro.2009.01.012
[26] Zong X., Laine A. F., Geiser E. A., Wilson D. C. (1996) De-noising and contrast enhancement via wavelet shrinkage and nonlinear adaptive gain. Proceeding of SPIE Wavelet Applications III 2762: 566–574 · doi:10.1117/12.236028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.