×

Parameter subset selection techniques for problems in mathematical biology. (English) Zbl 1411.92143

Summary: Patient-specific models for diagnostics and treatment planning require reliable parameter estimation and model predictions. Mathematical models of physiological systems are often formulated as systems of nonlinear ordinary differential equations with many parameters and few options for measuring all state variables. Consequently, it can be difficult to determine which parameters can reliably be estimated from available data. This investigation highlights pitfalls associated with practical parameter identifiability and subset selection. The latter refer to the process associated with selecting a subset of parameters that can be identified uniquely by parameter estimation protocols. The methods will be demonstrated using five examples of increasing complexity, as well as with patient-specific model predicting arterial blood pressure. This study demonstrates that methods based on local sensitivities are preferable in terms of computational cost and model fit when good initial parameter values are available, but that global methods should be considered when initial parameter value is not known or poorly understood. For global sensitivity analysis, Morris screening provides results in terms of parameter sensitivity ranking at a much lower computational cost.

MSC:

92C50 Medical applications (general)
62P10 Applications of statistics to biology and medical sciences; meta analysis
92-04 Software, source code, etc. for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19(6):716-723 · Zbl 0314.62039
[2] Alfrey K (1997) Model of the aortic baroreceptor in rat. PhD thesis, MS thesis. Rice University, Houston
[3] Andersson, J.; Åkesson, J.; Diehl, M.; Forth, S. (ed.); Hovland, P. (ed.); Phipps, E. (ed.); Utke, J. (ed.); Walther, A. (ed.), Casadi: a symbolic package for automatic differentiation andoptimal control, 297-307 (2012), Berlin
[4] Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Systems biology: parameter estimation for biochemical models. Febs J 276(4):886-902
[5] Ashyraliyev M, Jaeger J, Blom JG (2008) Parameter estimation and determinability analysis applied to drosophila gap gene circuits. BMC Syst Biol 2(1):83 (19 pages)
[6] Bellman R, Åström KJ (1970) On structural identifiability. Math Biosci 7(3):329-339
[7] Borgonovo E, Castaings W, Tarantola S (2012) Model emulation and moment-independent sensitivity analysis: an application to environmental modelling. Environ Model Softw 34:105-115. https://doi.org/10.1016/j.envsoft.2011.06.006. http://www.sciencedirect.com/science/article/pii/S1364815211001617
[8] Bugenhagen S, Cowley A, Beard D (2010) Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the dahl SS rat. Physiol Genom 42:23-41
[9] Daun S, Rubin J, Vodovotz Y, Roy A, Parker R, Clermont G (2008) An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol 253(4):843-853 · Zbl 1398.92053
[10] Devroye L (1986) Sample-based non-uniform random variate generation. In: Proceedings of the 18th conference on winter simulation. ACM, pp 260-265
[11] Eisenberg M, Harsh J (2017) A confidence building exercise in data and identifiability: modeling cancer chemotherapy as a case study. J Theor Biol 431:63-78 · Zbl 1388.92017
[12] Ellwein L, Pope S, Xie A, Batzel J, Kelley C, Olufsen M (2013) Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. Math Biosci 241(1):56-74 · Zbl 1309.92032
[13] Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) Ad model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27(2):233-249. https://doi.org/10.1080/10556788.2011.597854 · Zbl 1242.90230 · doi:10.1080/10556788.2011.597854
[14] Griewank A (1989) On automatic differentiation. Math Program Recent Dev Appl 6:83-107
[15] Haario H, Laine M, Mira A, Saksman E (2006) Dram: efficient adaptive MCMC. Stat Comput 16:339-354
[16] Holmberg A (1982) On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Math Biosci 62(1):23-43 · Zbl 0489.92021
[17] Houska B, Ferreau HJ, Diehl M (2011) Acado toolkitan open-source framework for automatic control and dynamic optimization. Opt Control Appl Methods 32(3):298-312. https://doi.org/10.1002/oca.939 · Zbl 1218.49002 · doi:10.1002/oca.939
[18] Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems. Springer, pp 101-122
[19] Jacquez JA, Greif P (1985) Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design. Math Biosci 77(1):201-227 · Zbl 0581.93017
[20] Jansen M (1999) Analysis of variance designs for model output. Comput Phys Commun 117(1):35-43 · Zbl 1015.68218
[21] Kelley C (1999) Iterative methods for optimization, vol 18. SIAM, Philadelphia · Zbl 0934.90082
[22] Li R, Henson M, Kurtz M (2004) Selection of model parameters for off-line parameter estimation. IEEE Trans Control Syst Technol 12(3):12
[23] Mahdi A, Meshkat N, Sullivant S (2014) Structural identifiability of viscoelastic mechanical systems. PLoS ONE 9(2):e86411
[24] Mahdi A, Sturdy J, Ottesen J, Olufsen M (2013) Modeling the afferent dynamics of the baroreflex control system. PLoS Comput Biol 9(12):e1003384
[25] Martins J, Kroo I, Alonso J (2000) An automated method for sensitivity analysis using complex variables. In: Proceeding of the 38th aerospace sciences meeting, p 0689
[26] Miao H, Xia X, Perelson AS, Wu H (2011) On identifiability of nonlinear ode models and applications in viral dynamics. SIAM Rev 53:3-39 · Zbl 1215.34015
[27] Morris M (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161-174
[28] Olufsen MS, Ottesen JT (2013) A practical approach to parameter estimation applied to model predicting heart rate regulation. J Math Biol 67(1):39-68 · Zbl 1267.90148
[29] Pope S, Ellwein L, Zapata C, Novak V, Kelley C, Olufsen M (2009) Estimation and identification of parameters in a lumped cerebrovascular model. Math Biosci Eng 6(1):93-115 · Zbl 1159.92025
[30] Rall LB (1981) Automatic differentiation: techniques and applications. Lecture notes in computer science, vol 120. Springer, New York · Zbl 0473.68025
[31] Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923-1929
[32] Rodriguez-Fernandez M, Banga JR, Doyle FJ (2012) Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models. Int J Robust Nonlinear Control 22(10):1082-1102 · Zbl 1258.93112
[33] Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259-270 · Zbl 1219.93116
[34] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Chichester · Zbl 1161.00304
[35] Saltelli A, Ratto M, Tarantola S, Campolongo F, of Ispra European Commission JRC (2006) Sensitivity analysis practices: strategies for model-based inference. Reliab Eng Syst Saf 91(10):1109-1125
[36] Saltelli A, Tarantola S, Chan KPS (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39-56. https://doi.org/10.1080/00401706.1999.10485594 · doi:10.1080/00401706.1999.10485594
[37] Silverman BW (2018) Density estimation for statistics and data analysis. Routledge, London
[38] Smith RC (2014) Uncertainty quantification: theory, implementation, and applications. SIAM, Philadelphia
[39] Sobol I (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7:784-802
[40] Sobol I (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1(4):407-414 · Zbl 1039.65505
[41] Sobol I (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55(1-3):271-280 · Zbl 1005.65004
[42] Transtrum M, Machta B, Sethna JP (2011) Geometry of nonlinear least squares with applications to sloppy models and optimization. Phys Rev E 83(3):36701
[43] Vrugt J, Braak CT, Diks C, Robinson B, Hyman J, Higdon D (2009) Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):273-290
[44] Wei P, Lu Z, Yuan X (2013) Monte carlo simulation for moment-independent sensitivity analysis. Reliab Eng Syst Saf 110:60-67. https://doi.org/10.1016/j.ress.2012.09.005. http://www.sciencedirect.com/science/article/pii/S0951832012001858
[45] Wentworth MT, Smith RC, Banks HT (2015) Parameter selection and verification techniques based on global sensitivity analysis illustrated for an HIV model. SIAM/ASA J Uncertain Quantif 4(1):266-297
[46] Williams ND, Wind-Willassen O, Wright AA, Program R, Mehlsen J, Ottesen JT, Olufsen MS (2014) Patient-specific modelling of head-up tilt. Math Med Biol 31(4):365-392 · Zbl 1307.92140
[47] Wolfram: Gauss-Newton methods (2013). http://reference.wolfHrBram.com/mathematica/tutorial/UnconstrainedOptimizationGaussHrBNewtonMethods.html
[48] Yao K, Shaw B, Kou B, McAuley K, Bacon D (2003) Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design. Polym React Eng 11(3):563-588
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.