Naik, Parvaiz Ahmad; Ghoreishi, Mohammad; Zu, Jian Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method. (English) Zbl 07509157 Int. J. Numer. Anal. Model. 19, No. 1, 52-84 (2022). MSC: 26A33 34D20 37M05 37N25 65L20 92B05 93A30 PDF BibTeX XML Cite \textit{P. A. Naik} et al., Int. J. Numer. Anal. Model. 19, No. 1, 52--84 (2022; Zbl 07509157) Full Text: Link OpenURL
Kaur, Gurmeet; Singh, Randhir; Briesen, Heiko Approximate solutions of aggregation and breakage population balance equations. (English) Zbl 07503683 J. Math. Anal. Appl. 512, No. 2, Article ID 126166, 27 p. (2022). MSC: 45K05 65H20 92D25 PDF BibTeX XML Cite \textit{G. Kaur} et al., J. Math. Anal. Appl. 512, No. 2, Article ID 126166, 27 p. (2022; Zbl 07503683) Full Text: DOI OpenURL
Obalalu, Adebowale Martins Chemical entropy generation and second-order slip condition on hydrodynamic Casson nanofluid flow embedded in a porous medium: a fast convergent method. (English) Zbl 07503418 J. Egypt. Math. Soc. 30, Paper No. 6, 25 p. (2022). MSC: 76V05 76A05 76S05 76T20 76M99 80A19 PDF BibTeX XML Cite \textit{A. M. Obalalu}, J. Egypt. Math. Soc. 30, Paper No. 6, 25 p. (2022; Zbl 07503418) Full Text: DOI OpenURL
Shah, Nehad Ali; Agarwal, Praveen; Chung, Jae Dong; Althobaiti, Saad; Sayed, Samy; Aljohani, A. F.; Alkafafy, Mohamed Analysis of time-fractional Burgers and diffusion equations by using modified \(q\)-HATM. (English) Zbl 07490648 Fractals 30, No. 1, Article ID 2240012, 12 p. (2022). MSC: 65Mxx 26Axx 35Rxx PDF BibTeX XML Cite \textit{N. A. Shah} et al., Fractals 30, No. 1, Article ID 2240012, 12 p. (2022; Zbl 07490648) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet Regarding new numerical results for the dynamical model of romantic relationships with fractional derivative. (English) Zbl 07490645 Fractals 30, No. 1, Article ID 2240009, 11 p. (2022). MSC: 34C60 34A08 91D99 34A45 PDF BibTeX XML Cite \textit{W. Gao} et al., Fractals 30, No. 1, Article ID 2240009, 11 p. (2022; Zbl 07490645) Full Text: DOI OpenURL
El-Dib, Yusry O. The damping Helmholtz-Rayleigh-Duffing oscillator with the non-perturbative approach. (English) Zbl 07478814 Math. Comput. Simul. 194, 552-562 (2022). MSC: 82-XX 76-XX PDF BibTeX XML Cite \textit{Y. O. El-Dib}, Math. Comput. Simul. 194, 552--562 (2022; Zbl 07478814) Full Text: DOI OpenURL
Al-Qudah, Alaa; Odibat, Zaid; Shawagfeh, Nabil A linearization-based computational algorithm of homotopy analysis method for nonlinear reaction-diffusion systems. (English) Zbl 07478811 Math. Comput. Simul. 194, 505-522 (2022). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{A. Al-Qudah} et al., Math. Comput. Simul. 194, 505--522 (2022; Zbl 07478811) Full Text: DOI OpenURL
Wang, An-Yang; Xu, Hang Highly accurate wavelet-homotopy solutions for mixed convection hybrid nanofluid flow in an inclined square lid-driven cavity. (English) Zbl 07469172 Comput. Math. Appl. 108, 88-108 (2022). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{A.-Y. Wang} and \textit{H. Xu}, Comput. Math. Appl. 108, 88--108 (2022; Zbl 07469172) Full Text: DOI OpenURL
Akinyemi, Lanre; Şenol, Mehmet; Huseen, Shaheed N. Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. (English) Zbl 07526144 Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{L. Akinyemi} et al., Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021; Zbl 07526144) Full Text: DOI OpenURL
Ullah, Ihsan; Ahmad, Saeed; Rahman, Mati ur; Arfan, Muhammad Investigation of fractional order tuberculosis (TB) model via Caputo derivative. (English) Zbl 07511362 Chaos Solitons Fractals 142, Article ID 110479, 9 p. (2021). MSC: 65-XX 26-XX PDF BibTeX XML Cite \textit{I. Ullah} et al., Chaos Solitons Fractals 142, Article ID 110479, 9 p. (2021; Zbl 07511362) Full Text: DOI OpenURL
Dubey, Ved Prakash; Dubey, Sarvesh; Kumar, Devendra; Singh, Jagdev A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. (English) Zbl 07511302 Chaos Solitons Fractals 142, Article ID 110375, 11 p. (2021). MSC: 92-XX 76-XX PDF BibTeX XML Cite \textit{V. P. Dubey} et al., Chaos Solitons Fractals 142, Article ID 110375, 11 p. (2021; Zbl 07511302) Full Text: DOI OpenURL
Nosrati Sahlan, Monireh; Afshari, Hojjat Three new approaches for solving a class of strongly nonlinear two-point boundary value problems. (English) Zbl 07509904 Bound. Value Probl. 2021, Paper No. 60, 21 p. (2021). MSC: 65Lxx PDF BibTeX XML Cite \textit{M. Nosrati Sahlan} and \textit{H. Afshari}, Bound. Value Probl. 2021, Paper No. 60, 21 p. (2021; Zbl 07509904) Full Text: DOI OpenURL
Ige, Ebenezer Olubunmi; Oyelami, Funmilayo Helen; Adedipe, Emmanuel Segun; Tlili, Iskander; Khan, M. Ijaz; Khan, Sami Ullah; Malik, M. Y.; Xia, Wei-Feng Analytical simulation of nanoparticle-embedded blood flow control with magnetic field influence through spectra homotopy analysis method. (English) Zbl 07503801 Int. J. Mod. Phys. B 35, No. 22, Article ID 2150226, 26 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{E. O. Ige} et al., Int. J. Mod. Phys. B 35, No. 22, Article ID 2150226, 26 p. (2021; Zbl 07503801) Full Text: DOI OpenURL
Goyal, Manish; Prakash, Amit; Gupta, Shivangi An efficient perturbation sumudu transform technique for the time-fractional vibration equation with a memory dependent fractional derivative in Liouville-Caputo sense. (English) Zbl 07490167 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 156, 18 p. (2021). MSC: 74-XX 65-XX PDF BibTeX XML Cite \textit{M. Goyal} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 156, 18 p. (2021; Zbl 07490167) Full Text: DOI OpenURL
Singh, Randhir; Singh, Gagandeep; Singh, Mehakpreet Numerical algorithm for solution of the system of Emden-Fowler type equations. (English) Zbl 07490147 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021). MSC: 34B05 34B15 34B16 34B18 34B27 34B60 PDF BibTeX XML Cite \textit{R. Singh} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021; Zbl 07490147) Full Text: DOI OpenURL
Akinyemi, Lanre; Iyiola, Olaniyi S. Analytical study of \((3+1)\)-dimensional fractional-reaction diffusion trimolecular models. (English) Zbl 07490023 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 92, 24 p. (2021). MSC: 26A33 34A12 35R11 PDF BibTeX XML Cite \textit{L. Akinyemi} and \textit{O. S. Iyiola}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 92, 24 p. (2021; Zbl 07490023) Full Text: DOI OpenURL
Prakasha, D. G.; Veeresha, P.; Baskonus, Haci Mehmet A novel approach for fractional \((1+1)\)-dimensional Biswas-Milovic equation. (English) Zbl 07489966 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 187, 18 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{D. G. Prakasha} et al., Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 187, 18 p. (2021; Zbl 07489966) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. (English) Zbl 07486471 Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 33, 22 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{P. Veeresha} and \textit{D. G. Prakasha}, Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 33, 22 p. (2021; Zbl 07486471) Full Text: DOI OpenURL
Nandeppanavar, Mahantesh M.; Madhusudhan, R.; Kemparaju, M. C.; Latha, R. On comparison of homotopy analysis method and finite difference method for two dimensional steady compressible flow with pressure gradients. (English) Zbl 07486458 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 20, 16 p. (2021). MSC: 76N20 PDF BibTeX XML Cite \textit{M. M. Nandeppanavar} et al., Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 20, 16 p. (2021; Zbl 07486458) Full Text: DOI OpenURL
Jassim, H. K.; Ahmad, H.; Shamaoon, A.; Cesarano, C. An efficient hybrid technique for the solution of fractional-order partial differential equations. (English) Zbl 1480.35392 Carpathian Math. Publ. 13, No. 3, 790-804 (2021). MSC: 35R11 45K05 PDF BibTeX XML Cite \textit{H. K. Jassim} et al., Carpathian Math. Publ. 13, No. 3, 790--804 (2021; Zbl 1480.35392) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 07481787 J. Appl. Nonlinear Dyn. 10, No. 3, 461-469 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 461--469 (2021; Zbl 07481787) Full Text: DOI OpenURL
Adewumi, A. O.; Adetona, R. A.; Ogundare, B. S. On closed-form solutions to integro-differential equations. (English) Zbl 07477953 J. Numer. Math. Stoch. 12, No. 1, 28-44 (2021). MSC: 45D05 45G10 65D99 65L05 PDF BibTeX XML Cite \textit{A. O. Adewumi} et al., J. Numer. Math. Stoch. 12, No. 1, 28--44 (2021; Zbl 07477953) Full Text: Link OpenURL
Singh, Randhir An efficient technique based on the HAM with Green’s function for a class of nonlocal elliptic boundary value problems. (English) Zbl 07468461 Comput. Methods Differ. Equ. 9, No. 3, 722-735 (2021). MSC: 33F05 65D20 65L10 65L80 34B05 34B15 34B18 34B27 PDF BibTeX XML Cite \textit{R. Singh}, Comput. Methods Differ. Equ. 9, No. 3, 722--735 (2021; Zbl 07468461) Full Text: DOI OpenURL
Wang, Kang-Le; Wang, Hao A novel variational approach for fractal Ginzburg-Landau equation. (English) Zbl 07468090 Fractals 29, No. 7, Article ID 2150205, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{K.-L. Wang} and \textit{H. Wang}, Fractals 29, No. 7, Article ID 2150205, 7 p. (2021; Zbl 07468090) Full Text: DOI OpenURL
Jafari, Hossein; Prasad, Jyoti Geetesh; Goswami, Pranay; Dubey, Ravi Shanker Solution of the local fractional generalized KdV equation using homotopy analysis method. (English) Zbl 1482.35064 Fractals 29, No. 5, Article ID 2140014, 10 p. (2021). MSC: 35C05 35Q53 35R11 PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 29, No. 5, Article ID 2140014, 10 p. (2021; Zbl 1482.35064) Full Text: DOI OpenURL
Rashidinia, Jalil; Sajjadian, Mehri Continuously bursting simulations and analytical solutions of the neocortical neurons model. (English) Zbl 07462158 Differ. Equ. Dyn. Syst. 29, No. 4, 751-763 (2021). MSC: 92B20 92C20 PDF BibTeX XML Cite \textit{J. Rashidinia} and \textit{M. Sajjadian}, Differ. Equ. Dyn. Syst. 29, No. 4, 751--763 (2021; Zbl 07462158) Full Text: DOI OpenURL
Zhao, Minghao; Ma, Zelong; Lu, Chunsheng; Zhang, Qiaoyun Application of the homotopy analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. (Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber.) (English) Zbl 1480.74075 AMM, Appl. Math. Mech., Engl. Ed. 42, No. 5, 665-676 (2021). MSC: 74F15 74G10 78A55 PDF BibTeX XML Cite \textit{M. Zhao} et al., AMM, Appl. Math. Mech., Engl. Ed. 42, No. 5, 665--676 (2021; Zbl 1480.74075) Full Text: DOI OpenURL
Oliveira, D. S.; de Oliveira, E. Capelas Analytical solutions for Navier-Stokes equations with Caputo fractional derivative. (English) Zbl 07443642 S\(\vec{\text{e}}\)MA J. 78, No. 1, 137-154 (2021). MSC: 35Q30 76D05 26A33 35G10 35R11 PDF BibTeX XML Cite \textit{D. S. Oliveira} and \textit{E. C. de Oliveira}, S\(\vec{\text{e}}\)MA J. 78, No. 1, 137--154 (2021; Zbl 07443642) Full Text: DOI arXiv OpenURL
Rasool, Ghulam; Shafiq, Anum; Khalique, Chaudry Masood Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. (English) Zbl 07440427 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2517-2533 (2021). MSC: 76R05 76D45 76A05 76T20 76W05 76M99 80A19 PDF BibTeX XML Cite \textit{G. Rasool} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2517--2533 (2021; Zbl 07440427) Full Text: DOI OpenURL
Malagi, Naveen S.; Veeresha, P.; Prasannakumara, B. C.; Prasanna, G. D.; Prakasha, D. G. A new computational technique for the analytic treatment of time-fractional Emden-Fowler equations. (English) Zbl 07431521 Math. Comput. Simul. 190, 362-376 (2021). MSC: 65-XX 92-XX PDF BibTeX XML Cite \textit{N. S. Malagi} et al., Math. Comput. Simul. 190, 362--376 (2021; Zbl 07431521) Full Text: DOI OpenURL
Hosseini, Kamyar; Ilie, Mousa; Mirzazadeh, Mohammad; Yusuf, Abdullahi; Sulaiman, Tukur Abdulkadir; Baleanu, Dumitru; Salahshour, Soheil An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense. (English) Zbl 07428957 Math. Comput. Simul. 187, 248-260 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{K. Hosseini} et al., Math. Comput. Simul. 187, 248--260 (2021; Zbl 07428957) Full Text: DOI OpenURL
Madhusudhan, R.; Nargund, Achala L.; Sathyanarayana, S. B. The effect of magnetic field on compressible boundary layer by homotopy analysis method. (English) Zbl 07425443 J. Indian Math. Soc., New Ser. 88, No. 1-2, 125-145 (2021). MSC: 76N20 76W05 PDF BibTeX XML Cite \textit{R. Madhusudhan} et al., J. Indian Math. Soc., New Ser. 88, No. 1--2, 125--145 (2021; Zbl 07425443) Full Text: DOI OpenURL
Ibrahim, Dachas; Daba, Mitiku; Bati, Solomon Optimal homotopy asymptotic method for investigation of effects of thermal radiation, internal heat generation, and buoyancy on velocity and heat transfer in the Blasius flow. (English) Zbl 1476.80008 Adv. Math. Phys. 2021, Article ID 5598817, 11 p. (2021). MSC: 80A21 80A19 76R10 35B40 35A24 80M35 PDF BibTeX XML Cite \textit{D. Ibrahim} et al., Adv. Math. Phys. 2021, Article ID 5598817, 11 p. (2021; Zbl 1476.80008) Full Text: DOI OpenURL
Eswaramoorthi, S.; Alessa, Nazek; Sangeethavaanee, M.; Namgyel, Ngawang Numerical and analytical investigation for Darcy-Forchheimer flow of a Williamson fluid over a Riga plate with double stratification and Cattaneo-Christov dual flux. (English) Zbl 1481.76210 Adv. Math. Phys. 2021, Article ID 1867824, 15 p. (2021). MSC: 76S05 76T20 76W05 76M99 80A19 80A21 PDF BibTeX XML Cite \textit{S. Eswaramoorthi} et al., Adv. Math. Phys. 2021, Article ID 1867824, 15 p. (2021; Zbl 1481.76210) Full Text: DOI OpenURL
Maitama, Shehu; Zhao, Weidong Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives. (English) Zbl 1476.34009 Comput. Appl. Math. 40, No. 3, Paper No. 86, 30 p. (2021). MSC: 34A07 35R11 35R13 44A10 PDF BibTeX XML Cite \textit{S. Maitama} and \textit{W. Zhao}, Comput. Appl. Math. 40, No. 3, Paper No. 86, 30 p. (2021; Zbl 1476.34009) Full Text: DOI OpenURL
Kounta, Moussa; Dawson, Nathan J. Linear quadratic Gaussian homing for Markov processes with regime switching and applications to controlled population growth/decay. (English) Zbl 1475.93117 Methodol. Comput. Appl. Probab. 23, No. 3, 1155-1172 (2021). MSC: 93E20 49L25 49N10 60G40 60J20 PDF BibTeX XML Cite \textit{M. Kounta} and \textit{N. J. Dawson}, Methodol. Comput. Appl. Probab. 23, No. 3, 1155--1172 (2021; Zbl 1475.93117) Full Text: DOI OpenURL
Arafa, Anas A. M.; Hagag, Ahmed M. Sh. A different approach for study some fractional evolution equations. (English) Zbl 1476.35293 Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021). MSC: 35R11 35A22 41A58 PDF BibTeX XML Cite \textit{A. A. M. Arafa} and \textit{A. M. Sh. Hagag}, Anal. Math. Phys. 11, No. 4, Paper No. 162, 21 p. (2021; Zbl 1476.35293) Full Text: DOI OpenURL
Wu, Huan; Xu, Hang Studies of wave interaction of high-order Korteweg-de Vries equation by means of the homotopy strategy and neural network prediction. (English) Zbl 07412676 Phys. Lett., A 415, Article ID 127653, 12 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{H. Wu} and \textit{H. Xu}, Phys. Lett., A 415, Article ID 127653, 12 p. (2021; Zbl 07412676) Full Text: DOI OpenURL
Doeva, Olga; Masjedi, Pedram Khaneh; Weaver, Paul M. Static analysis of composite beams on variable stiffness elastic foundations by the homotopy analysis method. (English) Zbl 07411612 Acta Mech. 232, No. 10, 4169-4188 (2021). MSC: 74K10 74E30 74G10 PDF BibTeX XML Cite \textit{O. Doeva} et al., Acta Mech. 232, No. 10, 4169--4188 (2021; Zbl 07411612) Full Text: DOI OpenURL
Wang, Ping; Lu, Dongqiang Nonlinear hydroelastic waves traveling in a plate in terms of Plotnikov-Toland’s model. (English) Zbl 07409135 Adv. Appl. Math. Mech. 13, No. 3, 724-734 (2021). MSC: 74J30 76B07 74F10 74K20 PDF BibTeX XML Cite \textit{P. Wang} and \textit{D. Lu}, Adv. Appl. Math. Mech. 13, No. 3, 724--734 (2021; Zbl 07409135) Full Text: DOI OpenURL
Mitchell, Jonathan Simplified Liénard equation by homotopy analysis method. (English) Zbl 1483.34027 Differ. Equ. Dyn. Syst. 29, No. 3, 735-748 (2021). Reviewer: J. Peter Praveen (Guntur) MSC: 34A45 34C15 34E05 PDF BibTeX XML Cite \textit{J. Mitchell}, Differ. Equ. Dyn. Syst. 29, No. 3, 735--748 (2021; Zbl 1483.34027) Full Text: DOI OpenURL
Rodriguez, Jose Israel; Du, Jin-Hong; You, Yiling; Lim, Lek-Heng Fiber product homotopy method for multiparameter eigenvalue problems. (English) Zbl 1473.65061 Numer. Math. 148, No. 4, 853-888 (2021). MSC: 65H20 65H17 65H10 35P30 PDF BibTeX XML Cite \textit{J. I. Rodriguez} et al., Numer. Math. 148, No. 4, 853--888 (2021; Zbl 1473.65061) Full Text: DOI arXiv OpenURL
Kumar, Amit; Baleanu, Dumitru An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel. (English) Zbl 1475.35390 Math. Methods Appl. Sci. 44, No. 7, 5458-5474 (2021). MSC: 35R11 35A35 35K15 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{D. Baleanu}, Math. Methods Appl. Sci. 44, No. 7, 5458--5474 (2021; Zbl 1475.35390) Full Text: DOI OpenURL
Khan, Kashif Ali; Seadawy, Aly R.; Jhangeer, Adil Numerical appraisal under the influence of the time dependent Maxwell fluid flow over a stretching sheet. (English) Zbl 1471.35079 Math. Methods Appl. Sci. 44, No. 7, 5265-5279 (2021). MSC: 35C07 35C08 35C10 35Q35 35Q61 76W05 PDF BibTeX XML Cite \textit{K. A. Khan} et al., Math. Methods Appl. Sci. 44, No. 7, 5265--5279 (2021; Zbl 1471.35079) Full Text: DOI OpenURL
Hosseini, Kamyar; Ilie, Mousa; Mirzazadeh, Mohammad; Baleanu, Dumitru An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law. (English) Zbl 1471.35301 Math. Methods Appl. Sci. 44, No. 8, 6247-6258 (2021). MSC: 35R11 35A22 35K20 35K57 PDF BibTeX XML Cite \textit{K. Hosseini} et al., Math. Methods Appl. Sci. 44, No. 8, 6247--6258 (2021; Zbl 1471.35301) Full Text: DOI OpenURL
Padmavathi, V.; Prakash, A.; Alagesan, K.; Magesh, N. Analysis and numerical simulation of novel coronavirus (COVID-19) model with Mittag-Leffler kernel. (English) Zbl 1476.37104 Math. Methods Appl. Sci. 44, No. 2, 1863-1877 (2021). MSC: 37N25 37M05 34F05 92D30 PDF BibTeX XML Cite \textit{V. Padmavathi} et al., Math. Methods Appl. Sci. 44, No. 2, 1863--1877 (2021; Zbl 1476.37104) Full Text: DOI OpenURL
Mesdoui, Fatiha; Shawagfeh, Nabil; Ouannas, Adel Global synchronization of fractional-order and integer-order \(N\) component reaction diffusion systems: application to biochemical models. (English) Zbl 1476.37109 Math. Methods Appl. Sci. 44, No. 1, 1003-1012 (2021). MSC: 37N35 35K57 26A33 34D20 PDF BibTeX XML Cite \textit{F. Mesdoui} et al., Math. Methods Appl. Sci. 44, No. 1, 1003--1012 (2021; Zbl 1476.37109) Full Text: DOI OpenURL
Li, Yongqiang; Yao, Wenkai Double-mode modeling of nonlinear flexural vibration analysis for a symmetric rectangular honeycomb sandwich thin panel by the homotopy analysis method. (English) Zbl 1466.74015 Math. Methods Appl. Sci. 44, No. 1, 7-26 (2021). MSC: 74H45 74S99 PDF BibTeX XML Cite \textit{Y. Li} and \textit{W. Yao}, Math. Methods Appl. Sci. 44, No. 1, 7--26 (2021; Zbl 1466.74015) Full Text: DOI OpenURL
Georgieva, Atanaska Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method. (English) Zbl 1467.45002 Demonstr. Math. 54, 11-24 (2021). MSC: 45D05 45L05 65R20 PDF BibTeX XML Cite \textit{A. Georgieva}, Demonstr. Math. 54, 11--24 (2021; Zbl 1467.45002) Full Text: DOI OpenURL
Biswas, Swapan; Ghosh, Uttam Approximate solution of homogeneous and nonhomogeneous \(5\alpha\) th-order space-time fractional KdV equations. (English) Zbl 07342019 Int. J. Comput. Methods 18, No. 1, Article ID 2050018, 23 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. Biswas} and \textit{U. Ghosh}, Int. J. Comput. Methods 18, No. 1, Article ID 2050018, 23 p. (2021; Zbl 07342019) Full Text: DOI OpenURL
Yu, Qiang; Xu, Hang A homotopy-based wavelet approach for large deflection of a circular plate on nonlinear foundations with parameterized boundaries. (English) Zbl 07336201 Comput. Math. Appl. 90, 80-95 (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Q. Yu} and \textit{H. Xu}, Comput. Math. Appl. 90, 80--95 (2021; Zbl 07336201) Full Text: DOI OpenURL
Patil, Sumit J.; Kashyap, Anisha R. V.; Kolwankar, Kiran M. Homotopy analysis method for oscillatory systems with cubic and trigonometric non-linearity. (English) Zbl 07332000 Mukherjee, Shaibal (ed.) et al., Computational mathematics, nanoelectronics, and astrophysics. Selected papers based on the presentations at the international conference, CMNA 2018, Indore, India, November 1–3, 2018. Singapore: Springer. Springer Proc. Math. Stat. 342, 25-45 (2021). MSC: 65L99 PDF BibTeX XML Cite \textit{S. J. Patil} et al., Springer Proc. Math. Stat. 342, 25--45 (2021; Zbl 07332000) Full Text: DOI OpenURL
Yang, Shuquan; Jia, Zhaoli; Wu, Qianqian; Wu, Huojun Homotopy analysis method for portfolio optimization problem under the 3/2 model. (English) Zbl 1460.91256 J. Syst. Sci. Complex. 34, No. 3, 1087-1101 (2021). MSC: 91G10 55P99 91G80 PDF BibTeX XML Cite \textit{S. Yang} et al., J. Syst. Sci. Complex. 34, No. 3, 1087--1101 (2021; Zbl 1460.91256) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G.; Hammouch, Zakia An efficient approach for the model of thrombin receptor activation mechanism with Mittag-Leffler function. (English) Zbl 1464.34072 Hammouch, Zakia (ed.) et al., Nonlinear analysis: problems, applications and computational methods. Proceedings of the 6th international congress of the Moroccan Society of Applied Mathematics, Beni-Mellal, Morocco, November 7–9, 2019. Cham: Springer. Lect. Notes Netw. Syst. 168, 44-60 (2021). MSC: 34C60 92C37 34A08 47N20 34A45 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Lect. Notes Netw. Syst. 168, 44--60 (2021; Zbl 1464.34072) Full Text: DOI OpenURL
Senol, Mehmet; Akinyemi, Lanre; Ata, Ayşe; Iyiola, Olaniyi S. Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation. (English) Zbl 1455.35228 Int. J. Mod. Phys. B 35, No. 2, Article ID 2150021, 17 p. (2021). MSC: 35Q53 35R11 35A25 PDF BibTeX XML Cite \textit{M. Senol} et al., Int. J. Mod. Phys. B 35, No. 2, Article ID 2150021, 17 p. (2021; Zbl 1455.35228) Full Text: DOI OpenURL
Prakash, Amit; Goyal, Manish; Baskonus, Haci Mehmet; Gupta, Shivangi A reliable hybrid numerical method for a time dependent vibration model of arbitrary order. (English) Zbl 07515645 AIMS Math. 5, No. 2, 979-1000 (2020). MSC: 65M99 35R11 44A10 PDF BibTeX XML Cite \textit{A. Prakash} et al., AIMS Math. 5, No. 2, 979--1000 (2020; Zbl 07515645) Full Text: DOI OpenURL
Korpinar, Zeliha; Inc, Mustafa; Baleanu, Dumitru On the fractional model of Fokker-Planck equations with two different operator. (English) Zbl 07515591 AIMS Math. 5, No. 1, 236-248 (2020). MSC: 35R11 35C08 82C31 35Q84 PDF BibTeX XML Cite \textit{Z. Korpinar} et al., AIMS Math. 5, No. 1, 236--248 (2020; Zbl 07515591) Full Text: DOI OpenURL
Chaudhary, Manish; Kumar, Rohit; Singh, Mritunjay Kumar Fractional convection-dispersion equation with conformable derivative approach. (English) Zbl 07511268 Chaos Solitons Fractals 141, Article ID 110426, 16 p. (2020). MSC: 76-XX 82-XX PDF BibTeX XML Cite \textit{M. Chaudhary} et al., Chaos Solitons Fractals 141, Article ID 110426, 16 p. (2020; Zbl 07511268) Full Text: DOI OpenURL
Fadugba, Sunday Emmanuel Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation. (English) Zbl 07511246 Chaos Solitons Fractals 141, Article ID 110351, 7 p. (2020). MSC: 26A33 34K37 PDF BibTeX XML Cite \textit{S. E. Fadugba}, Chaos Solitons Fractals 141, Article ID 110351, 7 p. (2020; Zbl 07511246) Full Text: DOI OpenURL
Rezapour, Shahram; Etemad, Sina; Mohammadi, Hakimeh A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals. (English) Zbl 07506585 Adv. Difference Equ. 2020, Paper No. 481, 30 p. (2020). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{S. Rezapour} et al., Adv. Difference Equ. 2020, Paper No. 481, 30 p. (2020; Zbl 07506585) Full Text: DOI OpenURL
Naik, Parvaiz Ahmad; Zu, Jian; Ghoreishi, Mohammad Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. (English) Zbl 07505815 Chaos Solitons Fractals 131, Article ID 109500, 21 p. (2020). MSC: 92Cxx 65Lxx 92Dxx PDF BibTeX XML Cite \textit{P. A. Naik} et al., Chaos Solitons Fractals 131, Article ID 109500, 21 p. (2020; Zbl 07505815) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Baskonus, Haci Mehmet; Prakasha, D. G.; Kumar, Pushpendra A new study of unreported cases of 2019-nCOV epidemic outbreaks. (English) Zbl 07504845 Chaos Solitons Fractals 138, Article ID 109929, 6 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{W. Gao} et al., Chaos Solitons Fractals 138, Article ID 109929, 6 p. (2020; Zbl 07504845) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Baskonus, Haci Mehmet; Yel, Gulnur New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. (English) Zbl 1483.92078 Chaos Solitons Fractals 134, Article ID 109696, 11 p. (2020). MSC: 92C50 92D30 65H20 34A08 26A33 PDF BibTeX XML Cite \textit{W. Gao} et al., Chaos Solitons Fractals 134, Article ID 109696, 11 p. (2020; Zbl 1483.92078) Full Text: DOI OpenURL
Veeresha, P.; Baskonus, Haci Mehmet; Prakasha, D. G.; Gao, Wei; Yel, Gulnur Regarding new numerical solution of fractional schistosomiasis disease arising in biological phenomena. (English) Zbl 1483.92007 Chaos Solitons Fractals 133, Article ID 109661, 7 p. (2020). MSC: 92-08 65L99 34A08 92B05 92D30 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Chaos Solitons Fractals 133, Article ID 109661, 7 p. (2020; Zbl 1483.92007) Full Text: DOI OpenURL
Dubey, Ved Prakash; Kumar, Rajnesh; Kumar, Devendra A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis. (English) Zbl 1483.68022 Chaos Solitons Fractals 133, Article ID 109626, 10 p. (2020). MSC: 68M11 92D30 65H20 PDF BibTeX XML Cite \textit{V. P. Dubey} et al., Chaos Solitons Fractals 133, Article ID 109626, 10 p. (2020; Zbl 1483.68022) Full Text: DOI OpenURL
Biazar, J.; Dehghan, M.; Houlari, T. Using homotopy analysis method to find the eigenvalues of higher order fractional Sturm-Liouville problems. (English) Zbl 07497003 Iran. J. Numer. Anal. Optim. 10, No. 1, 49-62 (2020). MSC: 34L16 34B24 34A08 34L15 PDF BibTeX XML Cite \textit{J. Biazar} et al., Iran. J. Numer. Anal. Optim. 10, No. 1, 49--62 (2020; Zbl 07497003) Full Text: DOI OpenURL
Hosseini, K.; Ilie, M.; Mirzazadeh, M.; Baleanu, D. A detailed study on a new \((2 + 1)\)-dimensional mKdV equation involving the Caputo-Fabrizio time-fractional derivative. (English) Zbl 07490980 Adv. Difference Equ. 2020, Paper No. 331, 13 p. (2020). MSC: 35R11 26A33 35Q53 47N20 PDF BibTeX XML Cite \textit{K. Hosseini} et al., Adv. Difference Equ. 2020, Paper No. 331, 13 p. (2020; Zbl 07490980) Full Text: DOI OpenURL
Baleanu, Dumitru; Mohammadi, Hakimeh; Rezapour, Shahram A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative. (English) Zbl 07490948 Adv. Difference Equ. 2020, Paper No. 299, 27 p. (2020). MSC: 37N25 34A08 26A33 92D30 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Adv. Difference Equ. 2020, Paper No. 299, 27 p. (2020; Zbl 07490948) Full Text: DOI OpenURL
Alomari, A. K. Homotopy-Sumudu transforms for solving system of fractional partial differential equations. (English) Zbl 1482.35241 Adv. Difference Equ. 2020, Paper No. 222, 16 p. (2020). MSC: 35R11 26A33 34A08 PDF BibTeX XML Cite \textit{A. K. Alomari}, Adv. Difference Equ. 2020, Paper No. 222, 16 p. (2020; Zbl 1482.35241) Full Text: DOI OpenURL
Gao, Wei; Veeresha, P.; Prakasha, D. G.; Senel, Bilgin; Baskonus, Haci Mehmet Iterative method applied to the fractional nonlinear systems arising in thermoelasticity with Mittag-Leffler kernel. (English) Zbl 07468622 Fractals 28, No. 8, Article ID 2040040, 16 p. (2020). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{W. Gao} et al., Fractals 28, No. 8, Article ID 2040040, 16 p. (2020; Zbl 07468622) Full Text: DOI OpenURL
Veeresha, P.; Prakasha, D. G.; Singh, Jagdev; Khan, Ilyas; Kumar, Devendra Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel. (English) Zbl 1482.35257 Adv. Difference Equ. 2020, Paper No. 174, 17 p. (2020). MSC: 35R11 26A33 47N20 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Adv. Difference Equ. 2020, Paper No. 174, 17 p. (2020; Zbl 1482.35257) Full Text: DOI OpenURL
Akinyemi, Lanre; Iyiola, Olaniyi S. A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. (English) Zbl 1482.35200 Adv. Difference Equ. 2020, Paper No. 169, 27 p. (2020). MSC: 35Q53 35R11 26A33 PDF BibTeX XML Cite \textit{L. Akinyemi} and \textit{O. S. Iyiola}, Adv. Difference Equ. 2020, Paper No. 169, 27 p. (2020; Zbl 1482.35200) Full Text: DOI OpenURL
Baleanu, Dumitru; Mohammadi, Hakimeh; Rezapour, Shahram Analysis of the model of HIV-1 infection of \(CD4^+\) T-cell with a new approach of fractional derivative. (English) Zbl 1482.37090 Adv. Difference Equ. 2020, Paper No. 71, 17 p. (2020). MSC: 37N25 34A08 26A33 92D30 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Adv. Difference Equ. 2020, Paper No. 71, 17 p. (2020; Zbl 1482.37090) Full Text: DOI OpenURL
Wang, Ping; Wang, Yongyan; Huo, Xintai Nonlinear hydroelastic interaction among a floating elastic plate, water waves, and exponential shear currents. (English) Zbl 1477.76019 Adv. Math. Phys. 2020, Article ID 7360794, 10 p. (2020). MSC: 76B15 76M45 74F10 PDF BibTeX XML Cite \textit{P. Wang} et al., Adv. Math. Phys. 2020, Article ID 7360794, 10 p. (2020; Zbl 1477.76019) Full Text: DOI OpenURL
Leulmi, S.; Ayadi, A. The application of the homotopy analysis method for solving the two phase inverse Stefan problem with optimisation. (English) Zbl 1464.90117 Indian J. Math. 62, No. 2, 209-229 (2020). MSC: 90C90 90C52 PDF BibTeX XML Cite \textit{S. Leulmi} and \textit{A. Ayadi}, Indian J. Math. 62, No. 2, 209--229 (2020; Zbl 1464.90117) OpenURL
Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. Darcy-Forchheimer flow by rotating disk with partial slip. (English) Zbl 1457.76164 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 741-752 (2020). MSC: 76S05 PDF BibTeX XML Cite \textit{T. Hayat} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 5, 741--752 (2020; Zbl 1457.76164) Full Text: DOI OpenURL
Khan, M.; Ahmed, A.; Ahmed, J. Transient flow of magnetized Maxwell nanofluid: Buongiorno model perspective of Cattaneo-Christov theory. (English) Zbl 1457.76034 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 4, 655-666 (2020). MSC: 76A10 76D10 76M55 PDF BibTeX XML Cite \textit{M. Khan} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 4, 655--666 (2020; Zbl 1457.76034) Full Text: DOI OpenURL
Ray, Atul Kumar; Vasu, B.; Murthy, P. V. S. N.; Gorla, Rama S. R. Non-similar solution of Eyring-Powell fluid flow and heat transfer with convective boundary condition: homotopy analysis method. (English) Zbl 1459.80005 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 16, 22 p. (2020). MSC: 80A19 76A05 80M99 PDF BibTeX XML Cite \textit{A. K. Ray} et al., Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 16, 22 p. (2020; Zbl 1459.80005) Full Text: DOI OpenURL
Omari, Derar; Alomari, A. K.; Mansour, Ammar; Bawaneh, Alaa; Mansour, Awad Analytical solution of the non-linear Michaelis-Menten pharmacokinetics equation. (English) Zbl 1466.92067 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 10, 9 p. (2020). MSC: 92C45 92-08 PDF BibTeX XML Cite \textit{D. Omari} et al., Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 10, 9 p. (2020; Zbl 1466.92067) Full Text: DOI OpenURL
Akinyemi, Lanre; Huseen, Shaheed N. A powerful approach to study the new modified coupled Korteweg-de Vries system. (English) Zbl 07318116 Math. Comput. Simul. 177, 556-567 (2020). MSC: 35Rxx 35Axx PDF BibTeX XML Cite \textit{L. Akinyemi} and \textit{S. N. Huseen}, Math. Comput. Simul. 177, 556--567 (2020; Zbl 07318116) Full Text: DOI OpenURL
Naik, Parvaiz Ahmad; Zu, Jian; Ghoreishi, Mohammad Stability analysis and approximate solution of SIR epidemic model with Crowley-Martin type functional response and Holling type-II treatment rate by using homotopy analysis method. (English) Zbl 1455.34039 J. Appl. Anal. Comput. 10, No. 4, 1482-1515 (2020). MSC: 34C23 34C60 34D23 92D30 34D20 PDF BibTeX XML Cite \textit{P. A. Naik} et al., J. Appl. Anal. Comput. 10, No. 4, 1482--1515 (2020; Zbl 1455.34039) Full Text: DOI OpenURL
Sidorov, Nikolaĭ Aleksandrovich The role of a priori estimates in the method of non-local continuation of solution by parameter. (Russian. English summary) Zbl 07311846 Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 67-76 (2020). MSC: 47H99 PDF BibTeX XML Cite \textit{N. A. Sidorov}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 67--76 (2020; Zbl 07311846) Full Text: DOI Link OpenURL
Abolvafaei, Mahnaz; Ganjefar, Soheil Integer-fractional decomposition and stability analysis of fractional-order nonlinear dynamic systems using homotopy singular perturbation method. (English) Zbl 1458.93189 Math. Control Signals Syst. 32, No. 4, 517-542 (2020). MSC: 93D05 93C15 26A33 93C70 93C10 PDF BibTeX XML Cite \textit{M. Abolvafaei} and \textit{S. Ganjefar}, Math. Control Signals Syst. 32, No. 4, 517--542 (2020; Zbl 1458.93189) Full Text: DOI OpenURL
Prakasha, Doddabhadrappla Gowda; Malagi, Naveen Sanju; Veeresha, Pundikala New approach for fractional Schrödinger-Boussinesq equations with Mittag-Leffler kernel. (English) Zbl 1455.35293 Math. Methods Appl. Sci. 43, No. 17, 9654-9670 (2020). MSC: 35R11 35G55 35Q55 PDF BibTeX XML Cite \textit{D. G. Prakasha} et al., Math. Methods Appl. Sci. 43, No. 17, 9654--9670 (2020; Zbl 1455.35293) Full Text: DOI OpenURL
Mishra, Hradyesh Kumar; Tripathi, Rajnee Homotopy perturbation method of delay differential equation using He’s polynomial with Laplace transform. (English) Zbl 1458.34115 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 289-298 (2020). MSC: 34K05 34K07 44A10 PDF BibTeX XML Cite \textit{H. K. Mishra} and \textit{R. Tripathi}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 289--298 (2020; Zbl 1458.34115) Full Text: DOI OpenURL
Sharma, Ram Prakash; Jain, Madhu; Kumar, Devendra Analytical solution of exothermic reactions model with constant heat source and porous medium. (English) Zbl 1459.80006 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 239-243 (2020). Reviewer: Aleksey Syromyasov (Saransk) MSC: 80A19 80A21 44A10 35K05 80M99 PDF BibTeX XML Cite \textit{R. P. Sharma} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 90, No. 2, 239--243 (2020; Zbl 1459.80006) Full Text: DOI OpenURL
Sacramento, Marta; Almeida, Cecília; Moreira, Miguel IFOHAM – a generalization of the Picard-Lindelöf iteration method. (IFOHAM – a generalization of the Picard-Lindelöff iteration method.) (English) Zbl 1454.65054 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 497-516 (2020). MSC: 65L99 34C15 65L05 PDF BibTeX XML Cite \textit{M. Sacramento} et al., Springer Proc. Math. Stat. 333, 497--516 (2020; Zbl 1454.65054) Full Text: DOI OpenURL
Tong, Shanshan; Han, Bo; Tang, Jinping A projective averaged Kaczmarz iteration for nonlinear ill-posed problems. (English) Zbl 1451.65068 Inverse Probl. 36, No. 9, Article ID 095012, 23 p. (2020). Reviewer: Bernd Hofmann (Chemnitz) MSC: 65J15 65J20 47J06 65N20 PDF BibTeX XML Cite \textit{S. Tong} et al., Inverse Probl. 36, No. 9, Article ID 095012, 23 p. (2020; Zbl 1451.65068) Full Text: DOI OpenURL
Veeresha, Pundikala; Prakasha, Doddabhadrappla Gowda; Baskonus, Haci Mehmet; Yel, Gulnur An efficient analytical approach for fractional Lakshmanan-Porsezian-Daniel model. (English) Zbl 1454.35352 Math. Methods Appl. Sci. 43, No. 7, 4136-4155 (2020). MSC: 35Q55 44A10 65M99 35R11 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Methods Appl. Sci. 43, No. 7, 4136--4155 (2020; Zbl 1454.35352) Full Text: DOI OpenURL
Akinyemi, Lanre; Iyiola, Olaniyi S.; Akpan, Udoh Iterative methods for solving fourth- and sixth-order time-fractional Cahn-Hilliard equation. (Iterative methods for solving fourth- and sixth-order time-fractional Cahn-Hillard equation.) (English) Zbl 1447.65109 Math. Methods Appl. Sci. 43, No. 7, 4050-4074 (2020). MSC: 65M99 65M12 65M15 35R11 26A33 35Q35 PDF BibTeX XML Cite \textit{L. Akinyemi} et al., Math. Methods Appl. Sci. 43, No. 7, 4050--4074 (2020; Zbl 1447.65109) Full Text: DOI arXiv OpenURL
Veeresha, Pundikala; Prakasha, Doddabhadrappla Gowda; Baleanu, Dumitru Analysis of fractional Swift-Hohenberg equation using a novel computational technique. (English) Zbl 1446.35256 Math. Methods Appl. Sci. 43, No. 4, 1970-1987 (2020). MSC: 35R11 26A33 41A58 PDF BibTeX XML Cite \textit{P. Veeresha} et al., Math. Methods Appl. Sci. 43, No. 4, 1970--1987 (2020; Zbl 1446.35256) Full Text: DOI OpenURL
Bhattacharyya, A.; Seth, G. S.; Kumar, R. Modeling of viscoelastic fluid flow past a non-linearly stretching surface with convective heat transfer: OHAM analysis. (English) Zbl 1441.80007 Manna, Santanu (ed.) et al., Mathematical modelling and scientific computing with applications. Proceedings of the international conference, ICMMSC 2018, Indore, India, July 19–21, 2018. Singapore: Springer. Springer Proc. Math. Stat. 308, 297-312 (2020). MSC: 80A21 80A19 76A10 76W05 76M99 PDF BibTeX XML Cite \textit{A. Bhattacharyya} et al., Springer Proc. Math. Stat. 308, 297--312 (2020; Zbl 1441.80007) Full Text: DOI OpenURL
Akinyemi, Lanre A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction. (English) Zbl 1463.35480 Comput. Appl. Math. 39, No. 3, Paper No. 175, 34 p. (2020). MSC: 35Q92 35R11 PDF BibTeX XML Cite \textit{L. Akinyemi}, Comput. Appl. Math. 39, No. 3, Paper No. 175, 34 p. (2020; Zbl 1463.35480) Full Text: DOI OpenURL
Singh, Jagdev; Kumar, Devendra; Kumar, Sunil An efficient computational method for local fractional transport equation occurring in fractal porous media. (English) Zbl 1463.76050 Comput. Appl. Math. 39, No. 3, Paper No. 137, 10 p. (2020). MSC: 76S05 26A33 35R11 35Q99 PDF BibTeX XML Cite \textit{J. Singh} et al., Comput. Appl. Math. 39, No. 3, Paper No. 137, 10 p. (2020; Zbl 1463.76050) Full Text: DOI OpenURL
Srivastava, H. M.; Jena, Rajarama Mohan; Chakraverty, Snehashish; Jena, Subrat Kumar Dynamic response analysis of fractionally-damped generalized Bagley-Torvik equation subject to external loads. (English) Zbl 1440.65272 Russ. J. Math. Phys. 27, No. 2, 254-268 (2020). MSC: 65N99 26A33 35R11 74F10 74K20 35Q74 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Russ. J. Math. Phys. 27, No. 2, 254--268 (2020; Zbl 1440.65272) Full Text: DOI OpenURL
Ramos, Higinio; Rufai, M. A. Numerical solution of boundary value problems by using an optimized two-step block method. (English) Zbl 1440.65075 Numer. Algorithms 84, No. 1, 229-251 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L10 65L05 65L20 PDF BibTeX XML Cite \textit{H. Ramos} and \textit{M. A. Rufai}, Numer. Algorithms 84, No. 1, 229--251 (2020; Zbl 1440.65075) Full Text: DOI OpenURL
Morales-Delgado, Victor Fabian; Gómez-Aguilar, José Francisco; Taneco-Hernández, Marco Antonio Mathematical modeling approach to the fractional Bergman’s model. (English) Zbl 1442.34084 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 805-821 (2020). MSC: 34C60 92C50 34A08 44A10 34A25 PDF BibTeX XML Cite \textit{V. F. Morales-Delgado} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 805--821 (2020; Zbl 1442.34084) Full Text: DOI OpenURL
Zhang, Guoqi; Wu, Zhiqiang Approximate limit cycles of coupled nonlinear oscillators with fractional derivatives. (English) Zbl 1481.34014 Appl. Math. Modelling 77, Part 2, 1294-1309 (2020). MSC: 34A08 34A45 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Z. Wu}, Appl. Math. Modelling 77, Part 2, 1294--1309 (2020; Zbl 1481.34014) Full Text: DOI OpenURL
Odibat, Zaid An improved optimal homotopy analysis algorithm for nonlinear differential equations. (English) Zbl 1436.65154 J. Math. Anal. Appl. 488, No. 2, Article ID 124089, 13 p. (2020). MSC: 65M99 65M12 35F20 35Q92 PDF BibTeX XML Cite \textit{Z. Odibat}, J. Math. Anal. Appl. 488, No. 2, Article ID 124089, 13 p. (2020; Zbl 1436.65154) Full Text: DOI OpenURL
Saratha, S. R.; Bagyalakshmi, M.; Sai Sundara Krishnan, G. Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. (English) Zbl 1449.65293 Comput. Appl. Math. 39, No. 2, Paper No. 112, 32 p. (2020). MSC: 65M99 35R11 34A08 34A25 35C10 35G31 PDF BibTeX XML Cite \textit{S. R. Saratha} et al., Comput. Appl. Math. 39, No. 2, Paper No. 112, 32 p. (2020; Zbl 1449.65293) Full Text: DOI OpenURL