×

Emergence of a multilayer structure in adaptive networks of phase oscillators. (English) Zbl 1355.34065

Summary: We report on self-organization of adaptive networks, where topology and dynamics evolve in accordance to a competition between homophilic and homeostatic mechanisms, and where links are associated to a vector of weights. Under an appropriate balance between the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges due to the adaptive evolution, resulting in different link weights at each layer, i.e. different components of the weights’ vector. In parallel, synchronized clusters at each layer are formed, which may overlap or not, depending on the values of the coupling strengths. Only when intra- and inter- layer coupling strengths are high enough, all layers reach identical final topologies, collapsing the system into, in fact, a monolayer network. The relationships between such steady state topologies and a set of dynamical network’s properties are discussed.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
93C40 Adaptive control/observation systems
90B10 Deterministic network models in operations research
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[2] Barabasi, A.-L.; Albert, R., Statistical mechanics of complex networks, Rev Mod Phys, 74, 47-97 (2002) · Zbl 1205.82086
[3] Newman, M. E., The structure and function of complex networks, SIAM Rev, 45, 167-256 (2003) · Zbl 1029.68010
[4] Watts, DJ., Small worlds: the dynamics of networks between order and randomness (1999), Princeton University Press: Princeton University Press Princeton
[5] Boccaletti, S.; Latora, V.; Moreno, V.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Phys Rep, 424, 175-308 (2006) · Zbl 1371.82002
[6] Assenza, S.; Gutierrez, R.; Gomez-Gardenes, J.; Latora, V.; Boccaletti, S., Emergence of structural patterns out of synchronization in networks with competitive interactions, Scientif Rep, 1, 99, 1-8 (2011)
[7] Gutierrez, R.; Amann, A.; Assenza, S.; Gomez-Gardenes, J.; Latora, V.; Boccaletti, S., Emerging meso- and macroscales from synchronization of adaptive networks, Phys Rev Lett, 107, 234103 (2011)
[8] McPherson, M.; Smith-Lovin, L.; Cook, J. M., Birds of a feather: homophily in social networks, Annu Rev Sociol, 27, 415-444 (2001)
[9] Hebb, D., The organization of behavior (1949), Wiley: Wiley New York
[10] Turrigiano, G. G.; Nelson, S. B., Homeostatic plasticity in the developing nervous system, Nat Rev Neurosci, 5, 97-107 (2004)
[11] Dunbar, R., Grooming, gossip, and the evolution of language (1998), Harvard University Press
[12] Kivela, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.; Moreno, Y.; Porter, M., Dynamical and spectral properties of complex networks, J Complex Netw, 2, 203-271 (2014)
[13] Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, CI.; Gomez-Gardenes, J.; Romance, M., The structure and dynamics of multilayer networks, Phys Rep, 544, 1-122 (2014)
[14] Battiston, F.; Nicosia, V.; V., L., Successful strategies for competing networks, Phys Rev E, 89, 032804 (2014)
[15] De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M., Mathematical formulation of multilayer networks, Phys Rev X, 3, 041022 (2013)
[16] Solá, L.; Romance, M.; Criado, R.; Flores, J.; del Amo, A. G.; Boccaletti, S., Eigenvector centrality of nodes in multiplex networks, Chaos, 23, 033131 (2013) · Zbl 1323.05117
[17] Min, B.; Yi, S.; Lee, K.-M.; Goh, K.-I., Network robustness of multiplex networks with interlayer degree correlations, Phys Rev E, 89, 042811 (2014)
[18] Sorrentino, F., Synchronization of hypernetworks of coupled dynamical systems, New J Phys, 14, 033035 (2012) · Zbl 1448.34109
[19] Irving, D.; Sorrentino, F., Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices, Phys Rev E, 86, 056102 (2012)
[20] Bogojeska, A.; Filiposka, S.; Mishkovski, I.; Kocarev, L., Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices, Telecommun Forum, TELFOR, 2013, 172-175 (2013)
[21] Gutiérrez, R.; Nadal, M. Sn.; Zanin, I.; Papo, D.; Boccaletti, S., Targeting the dynamics of complex networks, Sci Rep, 2, 396 (2012)
[22] Kuramoto, Y., Chemical oscillations, waves and turbulence (1984), Springer: Springer New York · Zbl 0558.76051
[23] Acebrón, J.; Bonilla, L.; Vicente, C.; Ritort, F.; Spigler, R., The kuramoto model: a simple paradigm for synchronization phenomena, Rev Mod Phys, 77, 137-185 (2005)
[24] Dörfler, F.; Bullo, F., Synchronization in complex networks of phase oscillators: a survey, Automatica, 50, 1539-1564 (2014) · Zbl 1296.93005
[25] Newman, M., Finding community structure in networks using the eigenvectors of matrices, Phys Rev E, 74, 036104 (2006)
[26] Fiedler, M., Laplacian of graphs and algebraic connectivity, Combinat Graph Theory, 25, 57-70 (1989) · Zbl 0731.05036
[27] Radicchi, F.; Arenas, A., Abrupt transition in the structural formation of interconnected networks, Nat Phys, 9, 717-720 (2013)
[28] Aguirre, J.; Papo, D.; Buldú, J., Successful strategies for competing networks, Nat Phys, 9, 230-234 (2013)
[29] Mafahim, J. U.; Lambert, D.; Zare, M.; Grigolini, P., Complexity matching in neural networks, New J Phys, 17, 015003 (2015) · Zbl 1452.92003
[30] Pramukkul, P.; Svenkeson, A.; West, B.; Grigolini, P., The value of conflict in stable social networks, EPL, 111, 58003 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.