zbMATH — the first resource for mathematics

The cohomology of holomorphic self maps of the Riemann sphere. (English) Zbl 0814.55003
Let \(\text{Hol}_ k\) denote the space of degree \(k\) holomorphic self maps of the Riemann sphere, \(\mathbb{P}^ 1\), and let \(\text{Rat}_ k \subset \text{Hol}_ k\) denote the subspace of based maps. The cohomology groups \(H^*(\text{Rat}_ k;\mathbb{Z}_ p)\) (\(p\) prime) have been computed by F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram [Acta Math. 166, No. 3/4, 163-221 (1991; Zbl 0741.55005)] and the algebra structure has been given by B. Totaro [The cohomology ring of the space of rational functions (preprint MSRI 1990)] for \(p\) odd. In this note we compute the cohomology algebra \(H^*(\text{Hol}_ k;\mathbb{Z}_ p)\) when \(p\) does not divide \(k\). We also determine the cohomology groups and a graded version of the cohomology algebra when \(k = pm\). Direct analysis of the Leray-Serre spectral sequence for the standard bundle \(\text{Rat}_ k \to \text{Hol}_ k \to \mathbb{P}^ 1\) leads to difficulties, and so we make use of the principal bundle \(\text{SO}(3) \to \text{Hol}_ k \to \text{Rat}_ k/S^ 1\). Our computations rely heavily on Milgram’s calculation of the groups \(H^*(\text{Rat}_ k/S^ 1;\mathbb{Z}_ p)\).

55N99 Homology and cohomology theories in algebraic topology
55R20 Spectral sequences and homology of fiber spaces in algebraic topology
58D15 Manifolds of mappings
Full Text: DOI EuDML
[1] [CCMM] Cohen, F.R., Cohen, R.L., Mann, B.M., Milgram, R.J.: The topology of rational functions and divisors of surfaces. Acta Math.166, 163–221 (1991) · Zbl 0741.55005 · doi:10.1007/BF02398886
[2] [CLM] Cohen, F.R., Lada, T.J., May, J.P.: The homology of iterated loop spaces. (Lect. Notes Math., vol. 533) New York Berlin Heidelberg: Springer 1976 · Zbl 0334.55009
[3] [CS] Cohen, R.L., Shimamoto, D.H.: Rational functions, labelled configurations, and Hilbert schemes. J. London Math. Soc.43, 509–528 (1991) · Zbl 0756.55005 · doi:10.1112/jlms/s2-43.3.509
[4] [DL] Dyer, E., Lashof, R.K.: Homology of iterated loop spaces. Am. J. Math.84, 35–88 (1962) · Zbl 0119.18206 · doi:10.2307/2372804
[5] [G] Guest, M.A.: Topology of the space of absolute minima of the energy functional. Am. J. of Math.106, 21–42 (1984) · Zbl 0564.58014 · doi:10.2307/2374428
[6] [K] Kirwan, F.C.: On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles. Ark. Mat.24, 221–275 (1986) · Zbl 0625.14026 · doi:10.1007/BF02384399
[7] [MaM1] Mann, B.M., Milgram, R.J.: Some spaces of holomorphic maps to complex Grassmann manifolds. J. Differ. Geom.33, 301–324 (1991) · Zbl 0736.54008
[8] [MaM2] Mann, B.M., Milgram, R.J.: On the moduli of SU(n) monopoles and holomorphic maps to flag manifolds. Preprint, University of New Mexico and Stanford University 1991
[9] [May] May, J.P.: The geometry of iterated loop spaces. (Lect. Notes Math., vol. 271) New York Berlin Heidelberg: Springer 1972 · Zbl 0244.55009
[10] [M1] Milgram, R.J.: Interated loop spaces. Ann. of Math.84, 386–403 (1966) · Zbl 0145.19901 · doi:10.2307/1970453
[11] [M2] Milgram, R.J.: The structure of spaces of Toeplitz matrices. Preprint, Stanford University and the University of New Mexico 1992
[12] [MiS] Milnor, J.W., Stasheff, J.D.: Characteristic classes. (Ann. of Math. Studies, no. 76) Princeton University Press 1974 · Zbl 0298.57008
[13] [S] segal, G.: The topology of spaces of rational functions. Acta Math.143, 39–72 (1979) · Zbl 0427.55006 · doi:10.1007/BF02392088
[14] [T] Totaro, B.: The coholomogy ring of the space of rational functions. Preprint, MSRI 1990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.