×

Variational-based locking-free energy-momentum schemes of higher-order for thermo-viscoelastic fiber-reinforced continua. (English) Zbl 1440.74095

Summary: Locking-free finite elements and energy-momentum time integration schemes are two of the best-known algorithmic improvements of finite element methods. Both are developed since the middle of the eighties of the last century, but usually independently from each other. Therefore, a smart interface between both algorithms is rarely a development goal of the researcher. In this paper, we present such a smart interface, namely the Hu-Washizuprocedure applied to the principle of virtual power. By using of the resulting mixed variational principle, we avoid locking in a spatial finite element discretization of non-isothermal inelastic fiber-reinforced materials, and obtain a family of corresponding higher-order accurate energy-momentum schemes. Thereby, we consider volumetric locking in the matrix material and line locking in the fibers. We show that this reduction of locking in the energy-momentum schemes leads to an increase of the maximum time step size, such that the efficiency of the time integration is improved in the sense that less CPU time is required. This could be shown by using an automatic time step size control with the iteration number of the applied Newton-Raphson scheme as target function. As numerical examples, we consider slender fiber-reinforced structures as a turbine rotor and a lightweight beam consisting of fiber-reinforced trusses. Here, we simulate different combinations of mechanical and thermal Dirichlet and Neumann boundary conditions.

MSC:

74E10 Anisotropy in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

PARDISO; Gmsh; FLagSHyP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Groß, M.; Dietzsch, J.; Bartelt, M., Variational-based higher-order accurate energy-momentum schemes for thermo-viscoelastic fiber-reinforced continua, Comput. Methods Appl. Mech. Engrg., 336, 353-418 (2018) · Zbl 1440.74103
[2] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[3] Holzapfel, G. A., Nonlinear Solid Mechanics (2000), Wiley: Wiley Chichester · Zbl 0980.74001
[4] Bonet, J.; Gil, A. J.; Wood, R. D., Nonlinear Solid Mechanics for Finite Element Analysis: Statics (2016), Cambridge University Press · Zbl 1341.74001
[5] Gonzalez, O., Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 190, 1763-1783 (2000) · Zbl 1005.74075
[6] Simo, J. C.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys., 43, 757-792 (1992) · Zbl 0758.73001
[7] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer Science & Business Media · Zbl 1094.65125
[8] Klinkel, S.; Wagner, W., A geometrical non-linear brick element based on the EAS-method, Internat. J. Numer. Methods Engrg., 40, 4529-4545 (1997) · Zbl 0899.73539
[9] Sansour, C.; Wriggers, P.; Sansour, J., On the design of energy-momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells, Internat. J. Numer. Methods Engrg., 60, 2419-2440 (2004) · Zbl 1075.74675
[10] Armero, F., Assumed strain finite element methods for conserving temporal integrations in non-linear solid dynamics, Internat. J. Numer. Methods Engrg., 74, 1795-1847 (2008) · Zbl 1195.74158
[11] Betsch, P.; Steinmann, P., Conservation properties of a time FE method. Part II: Time-Stepping Schemes for Nonlinear Elastodynamics, Internat. J. Numer. Methods Engrg., 50, 1931-1955 (2001) · Zbl 1134.74402
[12] Groß, M.; Betsch, P.; Steinmann, P., Conservation properties of a time FE method, Part IV: Higher order energy and momentum conserving schemes, Internat. J. Numer. Methods Engrg., 63, 1849-1897 (2005) · Zbl 1134.74406
[13] Groß, M.; Dietzsch, J., Variational-based energy-momentum schemes of higher-order for elastic fiber-reinforced continua, Comput. Methods Appl. Mech. Engrg., 320, 509-542 (2017) · Zbl 1439.74047
[14] Schlögl, T.; Leyendecker, S., Electrostatic-viscoelastic finite element model of dielectric actuators, Comput. Methods Appl. Mech. Engrg., 299, 421-439 (2016) · Zbl 1425.74180
[15] S. Ober-Blöbaum, N. Saake, Construction and analysis of higher order Galerkin variational integrators. arXiv:1304.1398 [math.NA], 2013. · Zbl 1337.37063
[16] Mohr, R.; Menzel, A.; Steinmann, P., A consistent time FE-method for large strain elasto-plasto-dynamics, Comput. Methods Appl. Mech. Engrg., 197, 33, 3024-3044 (2008) · Zbl 1194.74448
[17] Romero, I., Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I, Comput. Methods Appl. Mech. Engrg., 199, 1841-1858 (2010) · Zbl 1231.74471
[18] Hesch, C.; Betsch, P., Energy-momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems, Internat. J. Numer. Methods Engrg., 86, 11, 1277-1302 (2011) · Zbl 1235.74282
[19] Krüger, M.; Groß, M.; Betsch, P., An energy-entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua, ZAMM, 96, 2, 141-178 (2016)
[20] Betsch, P.; Janz, A., An energy-momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells, Internat. J. Numer. Methods Engrg., 108, 5, 423-455 (2016)
[21] Groß, M., (Higher-order Accurate and Energy-Momentum Consistent Discretisation of Dynamic Finite Deformation Thermo-Viscoelasticity. Higher-order Accurate and Energy-Momentum Consistent Discretisation of Dynamic Finite Deformation Thermo-Viscoelasticity, Series of the Chair for Computational Mechanics, vol. 2 (2009), Department of Mechanical Engineering, University of Siegen), urn:nbn:de:hbz:467-3890
[22] Groß, M.; Betsch, P., Galerkin-based energy-momentum consistent time-stepping algorithms for classical nonlinear thermo-dynamics, Math. Comput. Simul., 82, 4, 718-770 (2011) · Zbl 1317.74086
[23] Hughes, T. J.R., The Finite Element Method (2000), Dover: Dover Mineola · Zbl 1191.74002
[24] Wriggers, P., Nichtlineare Finite-Elemente-Methoden (2001), Springer · Zbl 0972.74002
[25] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 357-514 (2001) · Zbl 1123.37327
[26] Ibrahimbegovic, A., Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods (2009), Springer Science & Business Media · Zbl 1168.74002
[27] Bathe, K. J., Finite-Elemente-Methoden (2002), Springer Berlin
[28] Schröder, J.; Neff, P.; Balzani, D., A variational approach for materially stable anisotropic hyperelasticity, Internat. J. Solids Structures, 42, 4352-4371 (2005) · Zbl 1119.74321
[29] Klinkel, S.; Sansour, C.; Wagner, W., An anisotropic fibre-matrix material model at finite elastic-plastic strains, Comput. Mech., 35, 6, 409-417 (2005) · Zbl 1096.74005
[30] Reese, S.; Govindjee, S., A theory of finite viscoelasticity and numerical aspects, Internat. J. Solids Structures, 35, 3455-3482 (1998) · Zbl 0918.73028
[31] Reese, S., (Thermomechanische Modellierung Gummiartiger Polymerstrukturen. Thermomechanische Modellierung Gummiartiger Polymerstrukturen, Habilitationsschrift (2001), Institut für Baumechanik und Numerische Mechanik, Universität Hannover), F 01/4
[32] Al-Kinani, R., (Thermo-Mechanical Coupling of Transversely Isotropic Materials using High-Order Finite Elements. Thermo-Mechanical Coupling of Transversely Isotropic Materials using High-Order Finite Elements, Faculty of Mathematics/Computer Science and Mechanical Engineering (2014), Clausthal University of Technology), (Ph.D.-thesis)
[33] Balzani, D.; Neff, P.; Schröder, J.; Holzapfel, G. A., A polyconvex framework for soft biological tissues. Adjustment to experimental data, Internat. J. Solids Structures, 43, 6052-6070 (2006) · Zbl 1120.74632
[34] Al-Kinani, R.; Hartmann, S.; Netz, T., Transversal isotropy based on a multiplicative decomposition of the deformation gradient within p-version finite elements, ZAMM, 95, 7, 742-761 (2015) · Zbl 1326.74032
[35] Heimes, T., Finite Thermoinelastizität: Experimente, Materialmodellierung und Implementierung in die FEM am Beispiel einer Technischen Gummimischung (2005), VDI-Verlag
[36] Yeoh, O. H., Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66, 5, 754-771 (1993)
[37] Hartmann, S.; Neff, P., Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Internat. J. Solids Structures, 40, 11, 2767-2791 (2003) · Zbl 1051.74539
[38] Hackl, K., Generalized standard media and variational principles in classical and finite strain elastoplasticity, J. Mech. Phys. Solids, 45, 5, 667-688 (1997) · Zbl 0974.74512
[39] Schröder, B.; Kuhl, D., Small strain plasticity: classical versus multifield formulation, Arch. Appl. Mech., 85, 8, 1127-1145 (2015) · Zbl 1347.74018
[40] Simo, J. C., Numerical analysis and simulation of plasticity, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, Vol. VI (1998), Elsevier, North Holland) · Zbl 0930.74001
[41] Felippa, C. A., Nonlinear Finite Element Methods (2001), University of Colorado: University of Colorado Boulder, Colorado, USA
[42] Felippa, C. A., A compendium of FEM integration formulas for symbolic work, Eng. Comput., 21, 8, 867-890 (2004) · Zbl 1134.74404
[43] Bartelt, M.; Dietzsch, J.; Groß, M., Efficient implementation of energy conservation for higher order finite elements with variational integrators, Math. Comput. Simul., 150, 83-121 (2018) · Zbl 07316236
[44] Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 3, 475-487 (2004)
[45] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[46] Miehe, C.; Schröder, J., Energy and momentum conserving elastodynamics of a non-linear brick-type mixed finite shell element, Internat. J. Numer. Methods Engrg., 50, 8, 1801-1823 (2001) · Zbl 0977.74063
[47] L. Noels, L. Stainier, J.-P. Ponthot, A Consistent dissipative time integration scheme for structural dynamics: Application to rotordynamics, in: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004. · Zbl 1107.74344
[48] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[49] Groß, M., Conserving Time Integrators for Nonlinear Elastodynamics (2004), Department of Mechanical Engineering, University of Kaiserslautern, UKL/LTM T 04-01
[50] Armero, F.; Zambrana-Rojas, C., Volume-preserving energy-momentum schemes for isochoric multiplicative plasticity, Comput. Methods Appl. Mech. Engrg., 196, 4130-4159 (2007) · Zbl 1173.74395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.