zbMATH — the first resource for mathematics

Factorial moment espansion for stochastic systems. (English) Zbl 0816.60042
Summary: For a given functional of a simple point process, we find an analogue of Taylor’s theorem for its mean value. The terms of the expansion are integrals of some real functions with respect to factorial moment measures of the point process. The remainder term is an integral of some functional with respect to a higher order Campbell measure. A special case of this expansion is Palm-Khinchin formula. The results complement previous studies of M. I. Reiman and B. Simon [Math. Oper. Res. 14, No. 1, 26-59 (1989; Zbl 0665.60105)], F. Baccelli and P. Brémaud [Adv. Appl. Probab. 25, No. 1, 221-224 (1993; Zbl 0787.60057)] and shed new light on light traffic approximations of D. J. Daley and T. Rolski [Stochastic Processes Appl. 49, No. 1, 141- 158 (1994; Zbl 0788.60113)] and the author and T. Rolski [Ann. Appl. Probab. 3, No. 3, 881-896 (1993; Zbl 0781.60081)].

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60K25 Queueing theory (aspects of probability theory)
Full Text: DOI
[1] Baccelli, F.; Brémaud, P., Virtual customers in sensitivity and light traffic analysis via Campbell’s formula for point processes, Adv. appl. probab., 25, 221-224, (1993) · Zbl 0787.60057
[2] Baccelli, F.; Brémaud, P., Elements of queueing theory, (1984), Springer Berlin
[3] Błaszczyszyn, B.; Rolski, T., Queues in series in light traffic, Ann. appl. probab., 3, 881-896, (1993) · Zbl 0781.60081
[4] Brémaud, 1992 P. Brémaud, private communication (1992).
[5] Daley, D.J.; Rolski, T., Light traffice approximations in queues, Math. oper. res., 16, 57-71, (1991) · Zbl 0728.60096
[6] Daley, D.J.; Rolski, T., Finiteness of waiting-time moments in general stationary single-server queues, Ann. appl. probab., 2, 987-1008, (1992) · Zbl 0772.60073
[7] Daley, D.J.; Rolski, T., Light traffic approximations in general stationary single-server queues, Stochastic process. appl., 49, 141-158, (1994) · Zbl 0788.60113
[8] Daley, D.J.; Vere-Jones, D., An introduction to the theory of point processes, (1988), Springer New York · Zbl 0657.60069
[9] Franken, P.; König, D.; Arndt, U.; Schmidt, V., Queues and point processes, (1982), Wiley Chichester
[10] Hanisch, K.H., On inversion formulae for n-fold palm distributions of point processes in LCS-spaces, Math. nachr., 106, 171-179, (1983) · Zbl 0505.60060
[11] Hanisch, K.H., Reduction of nth moment measures and the special case of the third moment measure of stationary and isotropic point processes, Math. operationsforsch., 14, 421-435, (1983) · Zbl 0527.60052
[12] Heinrich, L.; Stoyan, D., On generalized palm-Khinchin formulae, Izv. akad. nauk army. SSR, 4, 280-287, (1984)
[13] Kallenberg, O., Random measures, (1983), Akademie Berlin, and Academic, New York · Zbl 0288.60053
[14] Karr, A.F., Point processes and their statistical inference, (1986), Dekker New York · Zbl 0601.62120
[15] Karr, A.F., Palm distributions of point processes and their applications to statistical inference, Contemp. math., 80, 331-358, (1988)
[16] Kiefer, J.; Wolfowitz, J., On the characteristics of the general queueing process with application to random walks, Ann. math. statist., 27, 147-161, (1956) · Zbl 0070.36602
[17] König, D.; Schmidt, V., Random point processes, (1992), Teubner Stuttgart, (In German)
[18] Kroese, D.P.; Schmidt, V., A continuous polling system with general service times, Ann. appl. probab., 2, 906-927, (1992) · Zbl 0772.60075
[19] Last, G., Some remarks on conditional distributions for point processes, Stochastic process. appl., 34, 121-135, (1990) · Zbl 0712.60055
[20] Loynes, R.M., The stability of a queue with non-independent inter-arrival and service times, (), 497-520 · Zbl 0203.22303
[21] Miyazawa, M., A formal approach to queueing processes in the steady state and their applications, J. appl. probab., 16, 332-346, (1979) · Zbl 0403.60089
[22] Reiman, M.I.; Simon, B., Open queueing systems in light traffic, Math. oper. res., 14, 26-59, (1989) · Zbl 0665.60105
[23] Ryll-Nardzewski, C., Remarks on processes of calls, (), 455-465
[24] Zazanis, M.A., Analyticity of Poisson driven stochastic systems, Adv. appl. probab., 24, 532-541, (1992) · Zbl 0757.60045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.