Cui, Jin; Xu, Zhuangzhi; Wang, Yushun; Jiang, Chaolong Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation. (English) Zbl 1454.65058 Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 65P10 35A22 35Q55 PDF BibTeX XML Cite \textit{J. Cui} et al., Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021; Zbl 1454.65058) Full Text: DOI
Kuznetsov, Dmitriy Feliksovich Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (English) Zbl 07318972 Differ. Uravn. Protsessy Upr. 2020, No. 4, 606 p. (2020). MSC: 65-02 60H05 60H10 65C30 65M75 PDF BibTeX XML Cite \textit{D. F. Kuznetsov}, Differ. Uravn. Protsessy Upr. 2020, No. 4, 606~p. (2020; Zbl 07318972) Full Text: Link Link
Prikazchikov, V. Exact three-point scheme and schemes of high order of accuracy for a forth-order ordinary differential equation. (English. Russian original) Zbl 07285120 Cybern. Syst. Anal. 56, No. 4, 566-576 (2020); translation from Kibern. Sist. Anal. 2020, No. 4, 56-67 (2020). MSC: 65L PDF BibTeX XML Cite \textit{V. Prikazchikov}, Cybern. Syst. Anal. 56, No. 4, 566--576 (2020; Zbl 07285120); translation from Kibern. Sist. Anal. 2020, No. 4, 56--67 (2020) Full Text: DOI
Zlotnik, A. A.; Zlotnik, I. A. Fast Fourier solvers for the tensor product high-order FEM for a Poisson type equation. (English) Zbl 1452.65366 Comput. Math. Math. Phys. 60, No. 2, 240-257 (2020) and Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 234-252 (2020). MSC: 65N30 65N25 65T50 65D32 65J15 35J25 34B09 34L10 PDF BibTeX XML Cite \textit{A. A. Zlotnik} and \textit{I. A. Zlotnik}, Comput. Math. Math. Phys. 60, No. 2, 240--257 (2020; Zbl 1452.65366) Full Text: DOI
Yao, Zheng-an; Zhou, Yu-Long High order approximation for the Boltzmann equation without angular cutoff under moderately soft potentials. (English) Zbl 1442.35291 Kinet. Relat. Models 13, No. 3, 435-478 (2020). MSC: 35Q20 35R11 76P05 PDF BibTeX XML Cite \textit{Z.-a. Yao} and \textit{Y.-L. Zhou}, Kinet. Relat. Models 13, No. 3, 435--478 (2020; Zbl 1442.35291) Full Text: DOI
Wang, Yuan-Ming; Ren, Lei Analysis of a high-order compact finite difference method for Robin problems of time-fractional sub-diffusion equations with variable coefficients. (English) Zbl 1442.65182 Appl. Numer. Math. 156, 467-492 (2020). MSC: 65M06 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{L. Ren}, Appl. Numer. Math. 156, 467--492 (2020; Zbl 1442.65182) Full Text: DOI
Dong, Bo; Wang, Wei High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrödinger equation. (English) Zbl 1455.65120 J. Comput. Appl. Math. 380, Article ID 112962, 10 p. (2020). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 65L60 34L40 PDF BibTeX XML Cite \textit{B. Dong} and \textit{W. Wang}, J. Comput. Appl. Math. 380, Article ID 112962, 10 p. (2020; Zbl 1455.65120) Full Text: DOI
Soori, Z.; Aminataei, A. Numerical solution of space fractional diffusion equation by spline method combined with Richardson extrapolation. (English) Zbl 07208214 Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020). MSC: 65L06 41A15 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Comput. Appl. Math. 39, No. 2, Paper No. 136, 18 p. (2020; Zbl 07208214) Full Text: DOI
Li, Xin; Gong, Yuezheng; Zhang, Luming Two novel classes of linear high-order structure-preserving schemes for the generalized nonlinear Schrödinger equation. (English) Zbl 1437.65213 Appl. Math. Lett. 104, Article ID 106273, 9 p. (2020). MSC: 65N35 65L06 65P10 35Q55 35Q41 PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Lett. 104, Article ID 106273, 9 p. (2020; Zbl 1437.65213) Full Text: DOI
Wang, Yuan-Ming A high-order linearized and compact difference method for the time-fractional Benjamin-Bona-Mahony equation. (English) Zbl 1436.65113 Appl. Math. Lett. 105, Article ID 106339, 8 p. (2020). MSC: 65M06 65M12 65M15 26A33 35R11 35Q35 PDF BibTeX XML Cite \textit{Y.-M. Wang}, Appl. Math. Lett. 105, Article ID 106339, 8 p. (2020; Zbl 1436.65113) Full Text: DOI
Zhu, Jun; Zheng, Feng; Qiu, Jianxian New finite difference Hermite WENO schemes for Hamilton-Jacobi equations. (English) Zbl 1436.65119 J. Sci. Comput. 83, No. 1, Paper No. 7, 21 p. (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 35F21 PDF BibTeX XML Cite \textit{J. Zhu} et al., J. Sci. Comput. 83, No. 1, Paper No. 7, 21 p. (2020; Zbl 1436.65119) Full Text: DOI
Christlieb, Andrew; Guo, Wei; Jiang, Yan; Yang, Hyoseon Kernel based high order “Explicit” unconditionally stable scheme for nonlinear degenerate advection-diffusion equations. (English) Zbl 07174106 J. Sci. Comput. 82, No. 3, Paper No. 52, 29 p. (2020). MSC: 65M20 65L06 65M06 35K55 35K65 PDF BibTeX XML Cite \textit{A. Christlieb} et al., J. Sci. Comput. 82, No. 3, Paper No. 52, 29 p. (2020; Zbl 07174106) Full Text: DOI
Lin, Xue-Lei; Lyu, Pin; Ng, Michael K.; Sun, Hai-Wei; Vong, Seakweng An efficient second-order convergent scheme for one-side space fractional diffusion equations with variable coefficients. (English) Zbl 07172820 Commun. Appl. Math. Comput. 2, No. 2, 215-239 (2020). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{X.-L. Lin} et al., Commun. Appl. Math. Comput. 2, No. 2, 215--239 (2020; Zbl 07172820) Full Text: DOI
Mumtaz, Faisal; Saidaoui, Hamed; Alharbi, Fahhad H. Efficient high order method for differential equations in unbounded domains using generalized coordinate transformation. (English) Zbl 1451.65156 J. Comput. Phys. 381, 275-289 (2019). MSC: 65M70 65L60 65M60 35J05 35Q40 PDF BibTeX XML Cite \textit{F. Mumtaz} et al., J. Comput. Phys. 381, 275--289 (2019; Zbl 1451.65156) Full Text: DOI
Sun, Hong; Sun, Zhizhong; Du, Rui A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation. (English) Zbl 07267476 Numer. Math., Theory Methods Appl. 12, No. 4, 1168-1190 (2019). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{H. Sun} et al., Numer. Math., Theory Methods Appl. 12, No. 4, 1168--1190 (2019; Zbl 07267476) Full Text: DOI
Chen, Yong; Gao, Hongjun; Huang, Jianhua Periodic stochastic high-order Degasperis-Procesi equation with cylindrical fBm. (English) Zbl 1434.60149 Stoch. Dyn. 19, No. 6, Article ID 1950043, 19 p. (2019). MSC: 60H15 60H40 35L70 PDF BibTeX XML Cite \textit{Y. Chen} et al., Stoch. Dyn. 19, No. 6, Article ID 1950043, 19 p. (2019; Zbl 1434.60149) Full Text: DOI
Li, Lin; Sun, Huafei; Ge, Weigao On the number of periodic solutions to Kaplan-Yorke-like high order differential delay equations with \(2k\) lags. (English) Zbl 1439.34068 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950196, 17 p. (2019). MSC: 34K13 58E50 PDF BibTeX XML Cite \textit{L. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950196, 17 p. (2019; Zbl 1439.34068) Full Text: DOI
Wang, Yuan-Ming; Ren, Lei A high-order \(L2\)-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. (English) Zbl 1429.65201 Appl. Math. Comput. 342, 71-93 (2019). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{L. Ren}, Appl. Math. Comput. 342, 71--93 (2019; Zbl 1429.65201) Full Text: DOI
Lyu, Pin; Vong, Seakweng A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. (English) Zbl 1428.35461 J. Sci. Comput. 80, No. 3, 1607-1628 (2019). MSC: 35Q53 65D05 45D05 65R20 65M06 65M12 35B65 35R11 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, J. Sci. Comput. 80, No. 3, 1607--1628 (2019; Zbl 1428.35461) Full Text: DOI
Bilman, Deniz; Buckingham, Robert Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation. (English) Zbl 1428.35485 J. Nonlinear Sci. 29, No. 5, 2185-2229 (2019). MSC: 35Q55 35Q15 35Q51 37K10 37K15 37K40 34M55 35R30 35P25 35B40 PDF BibTeX XML Cite \textit{D. Bilman} and \textit{R. Buckingham}, J. Nonlinear Sci. 29, No. 5, 2185--2229 (2019; Zbl 1428.35485) Full Text: DOI
Gao, Wenwu; Sun, Zhengjie High-order numerical solution of time-dependent differential equations with quasi-interpolation. (English) Zbl 1447.65059 Appl. Numer. Math. 146, 276-290 (2019). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M20 65L06 65M06 65D05 65M15 35K05 35Q53 PDF BibTeX XML Cite \textit{W. Gao} and \textit{Z. Sun}, Appl. Numer. Math. 146, 276--290 (2019; Zbl 1447.65059) Full Text: DOI
Ren, Lei; Liu, Lei A high-order compact difference method for time fractional Fokker-Planck equations with variable coefficients. (English) Zbl 1438.65188 Comput. Appl. Math. 38, No. 3, Paper No. 101, 16 p. (2019). MSC: 65M06 65M12 65M15 35R11 35Q84 82C31 PDF BibTeX XML Cite \textit{L. Ren} and \textit{L. Liu}, Comput. Appl. Math. 38, No. 3, Paper No. 101, 16 p. (2019; Zbl 1438.65188) Full Text: DOI
Li, Jibin; Zhou, Yan Exact solutions in invariant manifolds of some higher-order models describing nonlinear waves. (English) Zbl 1439.34004 Qual. Theory Dyn. Syst. 18, No. 1, 183-199 (2019). MSC: 34A05 34C25 34C27 34C37 34C45 35C08 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zhou}, Qual. Theory Dyn. Syst. 18, No. 1, 183--199 (2019; Zbl 1439.34004) Full Text: DOI
Chen, Fengjuan; Q. D. Wang, Qiudong High order Melnikov method: theory and application. (English) Zbl 1417.34102 J. Differ. Equations 267, No. 2, 1095-1128 (2019). MSC: 34C45 34E05 34C37 PDF BibTeX XML Cite \textit{F. Chen} and \textit{Q. Q. D. Wang}, J. Differ. Equations 267, No. 2, 1095--1128 (2019; Zbl 1417.34102) Full Text: DOI
Lyu, Pin; Vong, Seakweng A graded scheme with bounded grading for a time-fractional Boussinesq type equation. (English) Zbl 1414.65009 Appl. Math. Lett. 92, 35-40 (2019). MSC: 65M06 35R11 35Q35 65M12 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, Appl. Math. Lett. 92, 35--40 (2019; Zbl 1414.65009) Full Text: DOI
Li, Lin; Sun, Huafei; Ge, Weigao Multiple periodic solutions of high order differential delay equations with \(2k-1\) lags. (English) Zbl 07012071 Adv. Difference Equ. 2019, Paper No. 3, 22 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{L. Li} et al., Adv. Difference Equ. 2019, Paper No. 3, 22 p. (2019; Zbl 07012071) Full Text: DOI
Medina, Arcesio Castañeda; Schmid, Rochus Solution of high order compact discretized 3D elliptic partial differential equations by an accelerated multigrid method. (English) Zbl 1407.65319 J. Comput. Appl. Math. 350, 343-352 (2019). MSC: 65N55 65N06 65F08 65N12 76R50 68W30 65F10 PDF BibTeX XML Cite \textit{A. C. Medina} and \textit{R. Schmid}, J. Comput. Appl. Math. 350, 343--352 (2019; Zbl 1407.65319) Full Text: DOI
Macías-Díaz, J. E.; Hendy, A. S.; De Staelen, R. H. A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. (English) Zbl 1429.65190 Appl. Math. Comput. 325, 1-14 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} et al., Appl. Math. Comput. 325, 1--14 (2018; Zbl 1429.65190) Full Text: DOI
Rohaninasab, N.; Maleknejad, K.; Ezzati, R. Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method. (English) Zbl 1427.65425 Appl. Math. Comput. 328, 171-188 (2018). MSC: 65R20 65L60 34K06 45J05 PDF BibTeX XML Cite \textit{N. Rohaninasab} et al., Appl. Math. Comput. 328, 171--188 (2018; Zbl 1427.65425) Full Text: DOI
Chandra Sekhara Rao, S.; Manisha Numerical solution of generalized Black-Scholes model. (English) Zbl 1427.91294 Appl. Math. Comput. 321, 401-421 (2018). MSC: 91G60 65M06 35K10 35Q91 65M12 91G20 PDF BibTeX XML Cite \textit{S. Chandra Sekhara Rao} and \textit{Manisha}, Appl. Math. Comput. 321, 401--421 (2018; Zbl 1427.91294) Full Text: DOI
Zhou, Fengying; Xu, Xiaoyong The application of the second kind Chebyshev wavelets for solving high-oder multi-point boundary value problems. (English) Zbl 1438.65154 J. Math., Wuhan Univ. 38, No. 4, 619-632 (2018). MSC: 65L10 34B10 65L60 PDF BibTeX XML Cite \textit{F. Zhou} and \textit{X. Xu}, J. Math., Wuhan Univ. 38, No. 4, 619--632 (2018; Zbl 1438.65154) Full Text: DOI
He, Lingbing; Zhou, Yulong High order approximation for the Boltzmann equation without angular cutoff. (English) Zbl 1405.35129 Kinet. Relat. Models 11, No. 3, 547-596 (2018). MSC: 35Q20 35R11 82C40 PDF BibTeX XML Cite \textit{L. He} and \textit{Y. Zhou}, Kinet. Relat. Models 11, No. 3, 547--596 (2018; Zbl 1405.35129) Full Text: DOI
Ling, Dan; Cheng, Juan; Shu, Chi-Wang Conservative high order positivity-preserving discontinuous Galerkin methods for linear hyperbolic and radiative transfer equations. (English) Zbl 1407.65196 J. Sci. Comput. 77, No. 3, 1801-1831 (2018). MSC: 65M60 65M06 65N30 65M12 35B09 35R09 80A20 35Q79 85A25 PDF BibTeX XML Cite \textit{D. Ling} et al., J. Sci. Comput. 77, No. 3, 1801--1831 (2018; Zbl 1407.65196) Full Text: DOI
Wang, Yuan-Ming; Ren, Lei High-order compact difference methods for Caputo-type variable coefficient fractional sub-diffusion equations in conservative form. (English) Zbl 1397.65149 J. Sci. Comput. 76, No. 2, 1007-1043 (2018). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{Y.-M. Wang} and \textit{L. Ren}, J. Sci. Comput. 76, No. 2, 1007--1043 (2018; Zbl 1397.65149) Full Text: DOI
Melis, Ward; Samaey, Giovanni Telescopic projective integration for linear kinetic equations with multiple relaxation times. (English) Zbl 1404.65133 J. Sci. Comput. 76, No. 2, 697-726 (2018). MSC: 65M20 65L15 35Q20 65L04 76P05 65L06 PDF BibTeX XML Cite \textit{W. Melis} and \textit{G. Samaey}, J. Sci. Comput. 76, No. 2, 697--726 (2018; Zbl 1404.65133) Full Text: DOI
Kalise, Dante (ed.); Kunisch, Karl (ed.); Rao, Zhiping (ed.) Hamilton-Jacobi-Bellman equations. Numerical methods and applications in optimal control. Based on the workshop “Numerical methods for Hamilton-Jacobi equations in optimal control and related fields”, Linz, Austria, November 21–25, 2016. (English) Zbl 1398.49002 Radon Series on Computational and Applied Mathematics 21. Berlin: De Gruyter (ISBN 978-3-11-054263-9/hbk; 978-3-11-054359-9/ebook). xii, 197 p. (2018). MSC: 49-06 49J20 90C39 93B52 65K15 00B25 PDF BibTeX XML Cite \textit{D. Kalise} (ed.) et al., Hamilton-Jacobi-Bellman equations. Numerical methods and applications in optimal control. Based on the workshop ``Numerical methods for Hamilton-Jacobi equations in optimal control and related fields'', Linz, Austria, November 21--25, 2016. Berlin: De Gruyter (2018; Zbl 1398.49002) Full Text: DOI
Yun, Youngyun The moments of a diffusion process. (English) Zbl 1391.60200 Stat. Probab. Lett. 138, 36-41 (2018). MSC: 60J60 60H10 PDF BibTeX XML Cite \textit{Y. Yun}, Stat. Probab. Lett. 138, 36--41 (2018; Zbl 1391.60200) Full Text: DOI
Lin, Xue-Lei; Ng, Michael K.; Sun, Hai-Wei Stability and convergence analysis of finite difference schemes for time-dependent space-fractional diffusion equations with variable diffusion coefficients. (English) Zbl 1398.65214 J. Sci. Comput. 75, No. 2, 1102-1127 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{X.-L. Lin} et al., J. Sci. Comput. 75, No. 2, 1102--1127 (2018; Zbl 1398.65214) Full Text: DOI
Rostami, F.; Jafarian, A. A new artificial neural network structure for solving high-order linear fractional differential equations. (English) Zbl 06869846 Int. J. Comput. Math. 95, No. 3, 528-539 (2018). MSC: 47H30 PDF BibTeX XML Cite \textit{F. Rostami} and \textit{A. Jafarian}, Int. J. Comput. Math. 95, No. 3, 528--539 (2018; Zbl 06869846) Full Text: DOI
Minjeaud, Sebastian; Pasquetti, Richard High order \(C^0\)-continuous Galerkin schemes for high order PDEs, conservation of quadratic invariants and application to the Korteweg-de Vries model. (English) Zbl 1398.65253 J. Sci. Comput. 74, No. 1, 491-518 (2018). Reviewer: Petr Sváček (Praha) MSC: 65M60 65M70 65L06 PDF BibTeX XML Cite \textit{S. Minjeaud} and \textit{R. Pasquetti}, J. Sci. Comput. 74, No. 1, 491--518 (2018; Zbl 1398.65253) Full Text: DOI
Li, Xiaoli; Rui, Hongxing A high-order fully conservative block-centered finite difference method for the time-fractional advection-dispersion equation. (English) Zbl 1377.65107 Appl. Numer. Math. 124, 89-109 (2018). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, Appl. Numer. Math. 124, 89--109 (2018; Zbl 1377.65107) Full Text: DOI
Vignal, P.; Collier, N.; Dalcin, L.; Brown, D. L.; Calo, V. M. An energy-stable time-integrator for phase-field models. (English) Zbl 1439.74471 Comput. Methods Appl. Mech. Eng. 316, 1179-1214 (2017). MSC: 74S05 80M10 65M60 65D07 74N99 80A22 PDF BibTeX XML Cite \textit{P. Vignal} et al., Comput. Methods Appl. Mech. Eng. 316, 1179--1214 (2017; Zbl 1439.74471) Full Text: DOI
Ren, Lei; Wang, Yuan-Ming A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients. (English) Zbl 1427.65181 Appl. Math. Comput. 312, 1-22 (2017). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{L. Ren} and \textit{Y.-M. Wang}, Appl. Math. Comput. 312, 1--22 (2017; Zbl 1427.65181) Full Text: DOI
Liu, Yang; Zhang, Min; Li, Hong; Li, Jichun High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. (English) Zbl 1412.65150 Comput. Math. Appl. 73, No. 6, 1298-1314 (2017). MSC: 65M60 65M12 65M15 35R11 65M06 PDF BibTeX XML Cite \textit{Y. Liu} et al., Comput. Math. Appl. 73, No. 6, 1298--1314 (2017; Zbl 1412.65150) Full Text: DOI
Salama, A. A.; Al-Amery, D. G. A higher order uniformly convergent method for singularly perturbed delay parabolic partial differential equations. (English) Zbl 1398.65185 Int. J. Comput. Math. 94, No. 12, 2520-2546 (2017). MSC: 65L11 65M06 65M12 PDF BibTeX XML Cite \textit{A. A. Salama} and \textit{D. G. Al-Amery}, Int. J. Comput. Math. 94, No. 12, 2520--2546 (2017; Zbl 1398.65185) Full Text: DOI
Hu, Jun; Zhang, Shangyou A canonical construction of \({H^m}\)-nonconforming triangular finite elements. (English) Zbl 1399.65326 Ann. Appl. Math. 33, No. 3, 266-288 (2017). MSC: 65N30 65N15 65N12 35J30 PDF BibTeX XML Cite \textit{J. Hu} and \textit{S. Zhang}, Ann. Appl. Math. 33, No. 3, 266--288 (2017; Zbl 1399.65326)
Zheng, Liming; Pu, Chunsheng; Liu, Jing A solution for governing equation of low permeability rock consolidation considering initial seepage pressure gradients. (Chinese. English summary) Zbl 1399.35342 Acta Math. Appl. Sin. 40, No. 6, 809-819 (2017). MSC: 35Q74 PDF BibTeX XML Cite \textit{L. Zheng} et al., Acta Math. Appl. Sin. 40, No. 6, 809--819 (2017; Zbl 1399.35342)
Vong, Seakweng; Shi, Chenyang; Lyu, Pin High-order compact schemes for fractional differential equations with mixed derivatives. (English) Zbl 1390.65081 Numer. Methods Partial Differ. Equations 33, No. 6, 2141-2158 (2017). Reviewer: K. N. Shukla (Gurgaon) MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{S. Vong} et al., Numer. Methods Partial Differ. Equations 33, No. 6, 2141--2158 (2017; Zbl 1390.65081) Full Text: DOI
Rachh, Manas; Klöckner, Andreas; O’Neil, Michael Fast algorithms for quadrature by expansion. I: Globally valid expansions. (English) Zbl 1378.65074 J. Comput. Phys. 345, 706-731 (2017). MSC: 65D30 65N38 45J05 35J05 PDF BibTeX XML Cite \textit{M. Rachh} et al., J. Comput. Phys. 345, 706--731 (2017; Zbl 1378.65074) Full Text: DOI
Zhang, Wei; Li, Can; Wu, Xiaonan; Zhang, Jiwei High-order local artificial boundary conditions for the fractional diffusion equation on one-dimensional unbounded domain. (English) Zbl 1399.65183 J. Math. Study 50, No. 1, 28-53 (2017). MSC: 65M06 65M12 35R11 44A10 65L12 41A21 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Math. Study 50, No. 1, 28--53 (2017; Zbl 1399.65183) Full Text: DOI
Ding, Hengfei; Li, Changpin High-order algorithms for Riesz derivative and their applications. V. (English) Zbl 1376.65024 Numer. Methods Partial Differ. Equations 33, No. 5, 1754-1794 (2017). Reviewer: Manfred Tasche (Rostock) MSC: 65D25 65M06 65M12 35L20 35R11 PDF BibTeX XML Cite \textit{H. Ding} and \textit{C. Li}, Numer. Methods Partial Differ. Equations 33, No. 5, 1754--1794 (2017; Zbl 1376.65024) Full Text: DOI
Rosales, Rodolfo R.; Seibold, Benjamin; Shirokoff, David; Zhou, Dong Unconditional stability for multistep ImEx schemes: theory. (English) Zbl 1375.65106 SIAM J. Numer. Anal. 55, No. 5, 2336-2360 (2017). MSC: 65L20 65L06 65L05 34A34 65L50 76D05 PDF BibTeX XML Cite \textit{R. R. Rosales} et al., SIAM J. Numer. Anal. 55, No. 5, 2336--2360 (2017; Zbl 1375.65106) Full Text: DOI
Grüne, Lars; Le, Thuy T. T. A double-sided dynamic programming approach to the minimum time problem and its numerical approximation. (English) Zbl 1372.65193 Appl. Numer. Math. 121, 68-81 (2017). MSC: 65K10 49L20 35F21 49J20 49M25 PDF BibTeX XML Cite \textit{L. Grüne} and \textit{T. T. T. Le}, Appl. Numer. Math. 121, 68--81 (2017; Zbl 1372.65193) Full Text: DOI
Li, Tingting; Shu, Chi-Wang; Zhang, Mengping Stability analysis of the inverse Lax-Wendroff boundary treatment for high order central difference schemes for diffusion equations. (English) Zbl 1361.65062 J. Sci. Comput. 70, No. 2, 576-607 (2017). MSC: 65M12 65M06 35K05 65M20 65L06 PDF BibTeX XML Cite \textit{T. Li} et al., J. Sci. Comput. 70, No. 2, 576--607 (2017; Zbl 1361.65062) Full Text: DOI
Thieullen, Michèle; Vigot, Alexis Iterated stochastic processes: simulation and relationship with high order partial differential equations. (English) Zbl 1373.60138 Methodol. Comput. Appl. Probab. 19, No. 1, 121-149 (2017). MSC: 60J60 65C05 35R60 PDF BibTeX XML Cite \textit{M. Thieullen} and \textit{A. Vigot}, Methodol. Comput. Appl. Probab. 19, No. 1, 121--149 (2017; Zbl 1373.60138) Full Text: DOI
Wang, Hong; Yang, Danping; Zhu, Shengfeng Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. (English) Zbl 1359.65271 J. Sci. Comput. 70, No. 1, 429-449 (2017). Reviewer: Marius Ghergu (Dublin) MSC: 65N30 35J25 35R11 65N15 65N12 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Sci. Comput. 70, No. 1, 429--449 (2017; Zbl 1359.65271) Full Text: DOI
Maurin, Florian; Coox, Laurens; Greco, Francesco; Deckers, Elke; Claeys, Claus; Desmet, Wim Bloch theorem for isogeometric analysis of periodic problems governed by high-order partial differential equations. (English) Zbl 1439.65117 Comput. Methods Appl. Mech. Eng. 311, 743-763 (2016). MSC: 65M60 65D07 PDF BibTeX XML Cite \textit{F. Maurin} et al., Comput. Methods Appl. Mech. Eng. 311, 743--763 (2016; Zbl 1439.65117) Full Text: DOI
Bartezzaghi, Andrea; Dedè, Luca; Quarteroni, Alfio Isogeometric analysis of geometric partial differential equations. (English) Zbl 1439.65145 Comput. Methods Appl. Mech. Eng. 311, 625-647 (2016). MSC: 65N30 65D07 35J93 35R01 53A05 PDF BibTeX XML Cite \textit{A. Bartezzaghi} et al., Comput. Methods Appl. Mech. Eng. 311, 625--647 (2016; Zbl 1439.65145) Full Text: DOI
Feng, Qinghua; Meng, Fanwei Finite difference scheme with spatial fourth-order accuracy for a class of time fractional parabolic equations with variable coefficient. (English) Zbl 1419.35206 Adv. Difference Equ. 2016, Paper No. 305, 14 p. (2016). MSC: 35R11 35K99 PDF BibTeX XML Cite \textit{Q. Feng} and \textit{F. Meng}, Adv. Difference Equ. 2016, Paper No. 305, 14 p. (2016; Zbl 1419.35206) Full Text: DOI
Gao, Guang-hua; Sun, Zhi-zhong Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. (English) Zbl 1373.65055 J. Sci. Comput. 66, No. 3, 1281-1312 (2016). Reviewer: Charis Harley (Johannesburg) MSC: 65M06 35K05 35R11 65M12 PDF BibTeX XML Cite \textit{G.-h. Gao} and \textit{Z.-z. Sun}, J. Sci. Comput. 66, No. 3, 1281--1312 (2016; Zbl 1373.65055) Full Text: DOI
Chaumont-Frelet, Théophile On high order methods for the heterogeneous Helmholtz equation. (English) Zbl 1368.78131 Comput. Math. Appl. 72, No. 9, 2203-2225 (2016). MSC: 78M10 65L60 65L10 35J05 PDF BibTeX XML Cite \textit{T. Chaumont-Frelet}, Comput. Math. Appl. 72, No. 9, 2203--2225 (2016; Zbl 1368.78131) Full Text: DOI
Cao, Junying; Ma, Qunzhang; Wang, Ziqiang A modified block-by-block numerical scheme for impulsive differential equations. (Chinese. English summary) Zbl 1374.65130 Chin. J. Eng. Math. 33, No. 5, 506-516 (2016). MSC: 65L20 65R20 34A37 PDF BibTeX XML Cite \textit{J. Cao} et al., Chin. J. Eng. Math. 33, No. 5, 506--516 (2016; Zbl 1374.65130) Full Text: DOI
Guo, Wei; Lin, Guang; Christlieb, Andrew J.; Qiu, Jingmei An adaptive WENO collocation method for differential equations with random coefficients. (English) Zbl 1360.65034 Mathematics 4, No. 2, Article ID 29, 14 p. (2016). MSC: 65C30 60H15 35R60 65C05 60H35 65M70 35Q53 65M50 65M12 PDF BibTeX XML Cite \textit{W. Guo} et al., Mathematics 4, No. 2, Article ID 29, 14 p. (2016; Zbl 1360.65034) Full Text: DOI
Sahu, Smita High-order filtered scheme for front propagation problems. (English) Zbl 1356.65215 Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 727-744 (2016). MSC: 65M06 35F21 65M12 65M15 49L25 PDF BibTeX XML Cite \textit{S. Sahu}, Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 727--744 (2016; Zbl 1356.65215) Full Text: DOI
Yuan, Daming; Cheng, Juan; Shu, Chi-Wang High order positivity-preserving discontinuous Galerkin methods for radiative transfer equations. (English) Zbl 1351.65105 SIAM J. Sci. Comput. 38, No. 5, A2987-A3019 (2016). MSC: 65R20 45K05 82D75 85A25 PDF BibTeX XML Cite \textit{D. Yuan} et al., SIAM J. Sci. Comput. 38, No. 5, A2987--A3019 (2016; Zbl 1351.65105) Full Text: DOI
Groppi, Maria; Russo, Giovanni; Stracquadanio, Giuseppe Boundary conditions for semi-Lagrangian methods for the BGK model. (English) Zbl 1398.76204 Commun. Appl. Ind. Math. 7, No. 3, 138-164 (2016). MSC: 76P05 65M25 65L06 65L10 PDF BibTeX XML Cite \textit{M. Groppi} et al., Commun. Appl. Ind. Math. 7, No. 3, 138--164 (2016; Zbl 1398.76204) Full Text: DOI
Yang, Pei; Xiong, Tao; Qiu, Jing-Mei; Xu, Zhengfu High order maximum principle preserving finite volume method for convection dominated problems. (English) Zbl 1350.65095 J. Sci. Comput. 67, No. 2, 795-820 (2016). Reviewer: Vasilis Dimitriou (Chania) MSC: 65M08 65M20 65L06 35B50 35K55 PDF BibTeX XML Cite \textit{P. Yang} et al., J. Sci. Comput. 67, No. 2, 795--820 (2016; Zbl 1350.65095) Full Text: DOI arXiv
Shoshani, O.; Shaw, S. W. Generalized parametric resonance. (English) Zbl 1359.37146 SIAM J. Appl. Dyn. Syst. 15, No. 2, 767-788 (2016). MSC: 37N15 34B30 70K28 74H45 34A45 PDF BibTeX XML Cite \textit{O. Shoshani} and \textit{S. W. Shaw}, SIAM J. Appl. Dyn. Syst. 15, No. 2, 767--788 (2016; Zbl 1359.37146) Full Text: DOI
Vong, Seakweng; Lyu, Pin; Chen, Xu; Lei, Siu-Long High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. (English) Zbl 1382.65259 Numer. Algorithms 72, No. 1, 195-210 (2016). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{S. Vong} et al., Numer. Algorithms 72, No. 1, 195--210 (2016; Zbl 1382.65259) Full Text: DOI
Groppi, Maria; Russo, Giovanni; Stracquadanio, Giuseppe High order semi-Lagrangian methods for the BGK equation. (English) Zbl 1332.76051 Commun. Math. Sci. 14, No. 2, 389-414 (2016). MSC: 76P05 65L06 65M25 PDF BibTeX XML Cite \textit{M. Groppi} et al., Commun. Math. Sci. 14, No. 2, 389--414 (2016; Zbl 1332.76051) Full Text: DOI
Bartezzaghi, Andrea; Dedè, Luca; Quarteroni, Alfio Isogeometric analysis of high order partial differential equations on surfaces. (English) Zbl 1425.65145 Comput. Methods Appl. Mech. Eng. 295, 446-469 (2015). MSC: 65N30 65D17 35J40 PDF BibTeX XML Cite \textit{A. Bartezzaghi} et al., Comput. Methods Appl. Mech. Eng. 295, 446--469 (2015; Zbl 1425.65145) Full Text: DOI
Ji, Cui-cui; Sun, Zhi-zhong The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. (English) Zbl 1410.65315 Appl. Math. Comput. 269, 775-791 (2015). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{C.-c. Ji} and \textit{Z.-z. Sun}, Appl. Math. Comput. 269, 775--791 (2015; Zbl 1410.65315) Full Text: DOI
Hao, Zhao-peng; Sun, Zhi-zhong; Cao, Wan-rong A fourth-order approximation of fractional derivatives with its applications. (English) Zbl 1352.65238 J. Comput. Phys. 281, 787-805 (2015). MSC: 65M06 35R11 65D25 PDF BibTeX XML Cite \textit{Z.-p. Hao} et al., J. Comput. Phys. 281, 787--805 (2015; Zbl 1352.65238) Full Text: DOI
Ding, Hengfei; Li, Changpin; Chen, YangQuan High-order algorithms for Riesz derivative and their applications. II. (English) Zbl 1349.65284 J. Comput. Phys. 293, 218-237 (2015). MSC: 65M06 35R11 65D25 65M12 PDF BibTeX XML Cite \textit{H. Ding} et al., J. Comput. Phys. 293, 218--237 (2015; Zbl 1349.65284) Full Text: DOI
Zhao, Xuan; Sun, Zhi-zhong; Karniadakis, George Em Second-order approximations for variable order fractional derivatives: algorithms and applications. (English) Zbl 1349.65092 J. Comput. Phys. 293, 184-200 (2015). MSC: 65D25 35R11 65M70 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Comput. Phys. 293, 184--200 (2015; Zbl 1349.65092) Full Text: DOI
Cui, Mingrong Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients. (English) Zbl 1349.65281 J. Comput. Phys. 280, 143-163 (2015). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{M. Cui}, J. Comput. Phys. 280, 143--163 (2015; Zbl 1349.65281) Full Text: DOI
Ahmadian, Ali; Salahshour, Soheil; Chan, Chee Seng A Runge-Kutta method with reduced number of function evaluations to solve hybrid fuzzy differential equations. (English) Zbl 1355.65093 Soft Comput. 19, No. 4, 1051-1062 (2015). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L06 34A07 PDF BibTeX XML Cite \textit{A. Ahmadian} et al., Soft Comput. 19, No. 4, 1051--1062 (2015; Zbl 1355.65093) Full Text: DOI
Wang, Hong; Cheng, Aijie; Wang, Kaixin Fast finite volume methods for space-fractional diffusion equations. (English) Zbl 1382.65272 Discrete Contin. Dyn. Syst., Ser. B 20, No. 5, 1427-1441 (2015). MSC: 65M08 35R11 PDF BibTeX XML Cite \textit{H. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 20, No. 5, 1427--1441 (2015; Zbl 1382.65272) Full Text: DOI
Zhao, Lijing; Deng, Weihua A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. (English) Zbl 1332.65131 Numer. Methods Partial Differ. Equations 31, No. 5, 1345-1381 (2015). Reviewer: Marius Ghergu (Dublin) MSC: 65M12 35K05 35R11 65M06 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{W. Deng}, Numer. Methods Partial Differ. Equations 31, No. 5, 1345--1381 (2015; Zbl 1332.65131) Full Text: DOI arXiv
Ji, Cui-cui; Sun, Zhi-zhong A high-order compact finite difference scheme for the fractional sub-diffusion equation. (English) Zbl 1328.65176 J. Sci. Comput. 64, No. 3, 959-985 (2015). Reviewer: Kai Diethelm (Braunschweig) MSC: 65M06 65M12 35K05 35R11 PDF BibTeX XML Cite \textit{C.-c. Ji} and \textit{Z.-z. Sun}, J. Sci. Comput. 64, No. 3, 959--985 (2015; Zbl 1328.65176) Full Text: DOI
Itkin, Andrey High order splitting methods for forward PDEs and PIDEs. (English) Zbl 1337.65116 Int. J. Theor. Appl. Finance 18, No. 5, Article ID 1550031, 24 p. (2015). MSC: 65M06 35Q91 45K05 91G60 PDF BibTeX XML Cite \textit{A. Itkin}, Int. J. Theor. Appl. Finance 18, No. 5, Article ID 1550031, 24 p. (2015; Zbl 1337.65116) Full Text: DOI
Düring, Bertram; Heuer, Christof High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions. (English) Zbl 1326.65105 SIAM J. Numer. Anal. 53, No. 5, 2113-2134 (2015). MSC: 65M06 65M12 91G60 91G20 35Q91 PDF BibTeX XML Cite \textit{B. Düring} and \textit{C. Heuer}, SIAM J. Numer. Anal. 53, No. 5, 2113--2134 (2015; Zbl 1326.65105) Full Text: DOI arXiv
Chen, Minghua; Deng, Weihua High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. (English) Zbl 1317.65198 SIAM J. Sci. Comput. 37, No. 2, A890-A917 (2015). MSC: 65M55 65M06 65M12 35K05 35R11 65T50 PDF BibTeX XML Cite \textit{M. Chen} and \textit{W. Deng}, SIAM J. Sci. Comput. 37, No. 2, A890--A917 (2015; Zbl 1317.65198) Full Text: DOI arXiv
Cohen, David; Schweitzer, Julia High order numerical methods for highly oscillatory problems. (English) Zbl 1317.34137 ESAIM, Math. Model. Numer. Anal. 49, No. 3, 695-711 (2015). Reviewer: Ilia V. Boikov (Penza) MSC: 34E05 65P10 34E13 65L20 34C10 37M15 65L50 PDF BibTeX XML Cite \textit{D. Cohen} and \textit{J. Schweitzer}, ESAIM, Math. Model. Numer. Anal. 49, No. 3, 695--711 (2015; Zbl 1317.34137) Full Text: DOI
Vong, Seakweng; Wang, Zhibo A high order compact finite difference scheme for time fractional Fokker-Planck equations. (English) Zbl 1316.82023 Appl. Math. Lett. 43, 38-43 (2015). MSC: 82C31 35Q84 82-08 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{S. Vong} and \textit{Z. Wang}, Appl. Math. Lett. 43, 38--43 (2015; Zbl 1316.82023) Full Text: DOI
Wang, Zhibo; Vong, Seakweng A high-order exponential ADI scheme for two dimensional time fractional convection-diffusion equations. (English) Zbl 1369.65105 Comput. Math. Appl. 68, No. 3, 185-196 (2014). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{S. Vong}, Comput. Math. Appl. 68, No. 3, 185--196 (2014; Zbl 1369.65105) Full Text: DOI
Nguyen, Duc Duy; Zhao, Shan High order FDTD methods for transverse magnetic modes with dispersive interfaces. (English) Zbl 1354.78015 Appl. Math. Comput. 226, 699-707 (2014). MSC: 78M20 65M06 PDF BibTeX XML Cite \textit{D. D. Nguyen} and \textit{S. Zhao}, Appl. Math. Comput. 226, 699--707 (2014; Zbl 1354.78015) Full Text: DOI
Lerat, Alain Steady discrete shocks of 5th and 7th-order RBC schemes and shock profiles of their equivalent differential equations. (English) Zbl 1349.76497 J. Comput. Phys. 272, 629-643 (2014). MSC: 76M20 65M06 76L05 PDF BibTeX XML Cite \textit{A. Lerat}, J. Comput. Phys. 272, 629--643 (2014; Zbl 1349.76497) Full Text: DOI
Zhai, Shuying; Feng, Xinlong; He, Yinnian An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. (English) Zbl 1349.65356 J. Comput. Phys. 269, 138-155 (2014). MSC: 65M06 35R11 65M12 65M22 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Comput. Phys. 269, 138--155 (2014; Zbl 1349.65356) Full Text: DOI
Cui, Mingrong Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients. (English) Zbl 1339.65106 Appl. Math. Comput. 246, 464-473 (2014). MSC: 65M06 35R11 35K57 PDF BibTeX XML Cite \textit{M. Cui}, Appl. Math. Comput. 246, 464--473 (2014; Zbl 1339.65106) Full Text: DOI
Düring, Bertram; Fournié, Michel; Heuer, Christof High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. (English) Zbl 1319.91156 J. Comput. Appl. Math. 271, 247-266 (2014). MSC: 91G60 91G20 65M06 65M50 65C30 PDF BibTeX XML Cite \textit{B. Düring} et al., J. Comput. Appl. Math. 271, 247--266 (2014; Zbl 1319.91156) Full Text: DOI arXiv
Wang, Ziqiang; Cao, Junying A new high order numerical scheme to the time fractional diffusion equations. (Chinese. English summary) Zbl 1324.65116 J. Numer. Methods Comput. Appl. 35, No. 4, 277-288 (2014). MSC: 65M06 65M70 65M12 35R11 35K05 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{J. Cao}, J. Numer. Methods Comput. Appl. 35, No. 4, 277--288 (2014; Zbl 1324.65116)
Gao, Jing A numerical algorithm for higher order oscillatory differential equation. (Chinese. English summary) Zbl 1324.65100 Acta Math. Appl. Sin. 37, No. 4, 586-600 (2014). MSC: 65L05 34A34 34C10 34E05 PDF BibTeX XML Cite \textit{J. Gao}, Acta Math. Appl. Sin. 37, No. 4, 586--600 (2014; Zbl 1324.65100)
Hesthaven, Jan S.; Zhang, Shun; Zhu, Xueyu High-order multiscale finite element method for elliptic problems. (English) Zbl 1315.65098 Multiscale Model. Simul. 12, No. 2, 650-666 (2014). MSC: 65N30 65N55 65N15 35J25 PDF BibTeX XML Cite \textit{J. S. Hesthaven} et al., Multiscale Model. Simul. 12, No. 2, 650--666 (2014; Zbl 1315.65098) Full Text: DOI
Avila, Jorge Andrés Julca; Parreira, Aurelio José; Aguilar, Juan Carlos Zavaleta About the convergence of a numerical scheme of high order to solve fractional reaction-subdiffusion equation. (English) Zbl 1309.65123 Int. J. Appl. Math. 27, No. 4, 365-386 (2014). MSC: 65N12 PDF BibTeX XML Cite \textit{J. A. J. Avila} et al., Int. J. Appl. Math. 27, No. 4, 365--386 (2014; Zbl 1309.65123) Full Text: DOI
Cui, Mingrong A high-order compact exponential scheme for the fractional convection-diffusion equation. (English) Zbl 1291.65260 J. Comput. Appl. Math. 255, 404-416 (2014). MSC: 65M06 26A33 35R11 65M15 PDF BibTeX XML Cite \textit{M. Cui}, J. Comput. Appl. Math. 255, 404--416 (2014; Zbl 1291.65260) Full Text: DOI
Wei, Yunxia; Chen, Yanping Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation. (English) Zbl 1291.65390 Appl. Numer. Math. 81, 15-29 (2014). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{Y. Chen}, Appl. Numer. Math. 81, 15--29 (2014; Zbl 1291.65390) Full Text: DOI
Shi, Ye-qiong New exact solutions of the \((2+1)\)-dimensional Ginzburg-Landau equation. (English) Zbl 1390.35043 Math. Comput. Appl. 18, No. 2, 103-111 (2013). MSC: 35C05 35Q56 35-04 PDF BibTeX XML Cite \textit{Y.-q. Shi}, Math. Comput. Appl. 18, No. 2, 103--111 (2013; Zbl 1390.35043) Full Text: DOI
Cheng, Zhibo; Ren, Jingli Some results for high-order generalized neutral differential equation. (English) Zbl 1379.34065 Adv. Difference Equ. 2013, Paper No. 202, 11 p. (2013). MSC: 34K13 34K40 PDF BibTeX XML Cite \textit{Z. Cheng} and \textit{J. Ren}, Adv. Difference Equ. 2013, Paper No. 202, 11 p. (2013; Zbl 1379.34065) Full Text: DOI
Niu, Hong-ling; Hao, Ling; Yu, Zhi-xian Operational matrix method for solving the numerical solution of high order integro-differential equation with weakly singular. (Chinese. English summary) Zbl 1291.65388 J. Huaqiao Univ., Nat. Sci. 34, No. 5, 582-585 (2013). MSC: 65R20 45J05 45E10 PDF BibTeX XML Cite \textit{H.-l. Niu} et al., J. Huaqiao Univ., Nat. Sci. 34, No. 5, 582--585 (2013; Zbl 1291.65388)