×

Control of transport in a chaotic lattice. (English) Zbl 0899.76029

Summary: We examine a mechanism for the elimination of vertical transport in a square, isotropic chaotic lattice. We find that applying a shear jet along a line of symmetry in the lattice can completely impede chaotic transport across a specified barrier. This is accomplished through a change in allegiance of heteroclinic connections within the lattice. This mechanism is relatively insensitive to details such as amplitude or shape of the applied shear. It depends quite sensitively, however, on the precise location of the shear. This suggests that the placement of flow control devices in physical situations may be much more critical to transport behavior than are other control parameters. In addition, we develop a necessary condition for the existence of boundary circles in non-twist maps. Using this condition we find that transport across a barrier can be eliminated for all practical purposes without evidence for an invariant boundary circle.

MSC:

76-XX Fluid mechanics
37N99 Applications of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lamb, H., Hydrodynamics, ((1932), Dover: Dover New York), 221-229 · JFM 26.0868.02
[2] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, ((1961), Dover: Dover New York), 43-51 · Zbl 0142.44103
[3] (Batchelor, G. K., The Scientific Papers of G.I. Taylor, Vol. II (1958), Cambridge University Press: Cambridge University Press Cambridge), 190-192
[4] Shelley, M. J.; Vinson, M., Coherent structures on a boundary layer in Rayleigh-Bénard turbulence, Nonlinearity, 5, 323-351 (1992) · Zbl 0742.76035
[5] Stuart, J. T., On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29, 417-440 (1967) · Zbl 0152.45403
[6] Weiss, J. B., Transport and mixing in traveling waves, Phys. Fluids A, 3, 1379-1384 (1991)
[7] Laadhari, F.; Skandaji, L.; Morel, R., Turbulence reduction in a boundary layer by a local spanwise oscillating surface, Phys. Fluids, 6, 3218-3220 (1994)
[8] Joslin, R. D.; Streett, C. L., The role of stationary cross-flow vortices in boundary-layer transition on swept wings, Phys. Fluids, 6, 3442-3453 (1994)
[9] Scovel, C., On symplectic lattice maps, Phys. Lett. A, 159, 396-400 (1991)
[10] Weiss, J. B.; Knobloch, E., Mass transport and mixing by modulated traveling waves, Phys. Rev. A, 40, 2579-2589 (1989)
[11] Shraiman, B. I., Diffusive transport in a Rayleigh-Bénard convection cell, Phys. Rev. A, 36, 261-267 (1987)
[12] Broomhead, D. S.; Ryrie, S. C., Particle paths in wavy vortices, Nonlinearity, 1, 409-434 (1988) · Zbl 0645.76026
[13] Solomon, T. H.; Gollub, J. P., Chaotic particle transport in time-dependent Rayleigh-Bénard convection, Phys. Rev. A, 38, 6280-6286 (1988)
[14] Zaslavskii, G. M.; Sagdeev, R. A.; Chaikovskii, D. K.; Chernikov, A. A., Chaos and two-dimensional random walk in periodic and quasiperiodic fields, Sov. Phys. JETP, 68, 995-1000 (1989)
[15] Zaslavskii, G. M.; Zakharov, M. Yu.; Sagdeev, R. Z.; Usikov, D. A.; Chernikov, A. A., Stochastic web and diffusion of particles in a magnetic field, Sov. Phys. JETP, 64, 294-303 (1986)
[16] Afanasév, V. V.; Sagdeev, R. Z.; Usikov, D. A.; Zaslavsky, G. M., Perturbation of a stochastic web, Phys. Lett. A, 151, 276-280 (1990)
[17] Browne, M. W., Micro-machines help solve intractable problem of turbulence, New York Times, B8 (3 January 1995)
[18] Liepmann, H. W., The rise and fall of ideas in turbulence, Amer. Scientist, 67, 221-228 (1979)
[19] Wiggins, S., Chaotic Transport in Dynamical Systems (1992), Springer: Springer Berlin · Zbl 0585.58039
[20] Rising, H., Application of chaos and dynamical systems approaches to mixing in fluids, (Ph.D. Thesis (1989), Univ. of Mass: Univ. of Mass Amherst, MA 01003 USA)
[21] Del Castillo-Negrete, D.; Morrison, P. J., Chaotic transport by rossby waves in shear flow, Phys. Fluids A, 5, 948-965 (1993) · Zbl 0781.76017
[22] Howard, J. E.; Humphreys, J., Nonmonotonic twist maps, Physica D, 80, 256-276 (1995) · Zbl 0888.58055
[23] Del Castillo-Negrete, D.; Greene, J. M.; Morrison, P. J., Area preserving nontwist maps: periodic orbits and transition to chaos, Physica D, 91, 1-23 (1996) · Zbl 0890.58068
[24] Zaslavskii, G. M.; Zakharov, M. Yu.; Neishtadt, A. I.; Sagdeev, R. Z.; Usikov, D. A.; Chernikov, A. A., Multidimensional Hamiltonian chaos, Sov. Phys. JETP, 69, 5, 885-897 (1989)
[25] Greene, J. M.; MacKay, R. S.; Stark, J., Boundary circles for area-preserving maps, Physica D, 21, 267-295 (1986) · Zbl 0607.65054
[26] Del Castillo-Negrete, D.; Greene, J. M.; Morrison, P. J., Area preserving nontwist maps: periodic orbits and transition to chaos, Physica D, 91, 1-23 (1996) · Zbl 0890.58068
[27] Meiss, J. D., Symplectic maps variational principles and transport, Rev. Mod. Phys., 64, 795-848 (1992) · Zbl 1160.37302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.