×

Another return of “Return to equilibrium”. (English) Zbl 1113.82038

Summary: The property of “return to equilibrium” is established for a class of quantum-mechanical models describing interactions of a (toy) atom with black-body radiation, or of a spin with a heat bath of scalar bosons, under the assumption that the interaction strength is sufficiently weak. For models describing the first class of systems, our upper bound on the interaction strength is independent of the temperature \(T\), (with \(0<T\leq T_0<\infty\)), while, for the spin-boson model, it tends to zero logarithmically, as \(T\to 0\). Our result holds for interaction form factors with physically realistic infrared behaviour.
Three key ingredients of our analysis are: a suitable concrete form of the Araki-Woods representation of the radiation field, Mourre’s positive commutator method combined with a recent virial theorem, and a norm bound on the difference between the equilibrium states of the interacting and the non-interacting system (which, for the system of an atom coupled to black-body radiation, is valid for all temperatures \(T\geq 0\), assuming only that the interaction strength is sufficiently weak).

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Arai, A., Hirokawa, M.: Ground states of a general class of quantum field Hamiltonians. Rev. Math. Phys. 12(9), 1085-1135 (2000) · Zbl 0983.81016 · doi:10.1142/S0129055X00000393
[2] Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Inst. Math. Sci. 9, 165-209 (1973/74) · Zbl 0273.46054
[3] Amrein, W., Boutet de Monvel, A., Georgescu, V.: C0-Groups, Commutator Methods and Spectral Theory of N-body Hamiltonians. Basel-Boston-Berlin: Birkhäuser, 1996 · Zbl 0962.47500
[4] Araki, H., Woods, E.: Representations of the canonical commutation relations describing a non-relativistic infinite free bose gas. J. Math. Phys. 4, 637-662 (1963) · doi:10.1063/1.1704002
[5] Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41(6), 3985-4060 (2000) · Zbl 1037.82029 · doi:10.1063/1.533334
[6] Bach, V., Fröhlich, J., Sigal, I.M., Soffer, A.: Positive Commutators and the spectrum of Pauli-Fierz hamiltonians of atoms and molecules. Commun. Math. Phys. 207(3), 557-587 (1999) · Zbl 0962.81011 · doi:10.1007/s002200050737
[7] Derezi?ski, J., Jaksi?, V.: Spectral Theory of Pauli-Fierz Operators. J. Funct. Anal. 180, 243-327 (2001) · Zbl 1034.81016 · doi:10.1006/jfan.2000.3681
[8] Derezi?ski, J., Jaksi?, V.: Return to equilibrium for Pauli-Fierz systems. Ann. Henri Poincaré, 4(4), 739-793 (2003)
[9] Derezi?ski, J., Jaksi?, V.: On the nature of Fermi Golden Rule for open quantum systems. J. Stat. Phys. 116(1), 411-423 (2004) · Zbl 1142.82345 · doi:10.1023/B:JOSS.0000037208.99352.0a
[10] Derezi?ski, J., Jaksi?, V., Pillet, C.-A.: Perturbation theory for W*-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15(5), 447-489 (2003) · Zbl 1090.46049 · doi:10.1142/S0129055X03001679
[11] Fröhlich, J.: An introduction to some topics in constructive quantum field theory. NATO advanced study institutes seires: Series B, Physics; V. 30. International Summer Institute on Theoretical Physics, 8th, University of Bielefeld, 1976
[12] Fröhlich, J., Merkli, M.: Thermal Ionization. Mathematical Physics, Analysis and Geometry 7(3), 239-287 (2004) · Zbl 1067.82037 · doi:10.1023/B:MPAG.0000034613.13746.8a
[13] Fröhlich, J., Merkli, M., Sigal, I.M.: Ionization of atoms in a thermal field. Journal of Statistical Physics 116(1-4), 311-359 (2004) · Zbl 1142.82347
[14] Fannes, M., Nachtergaele, B., Verbeure, A.: The equilibrium states of the spin-boson model. Commun. Math. Phys. 114(4), 537-548 (1988) · Zbl 0653.46064 · doi:10.1007/BF01229453
[15] Georgescu, V., Gérard, C., Schach-Moeller, J.: Spectral Theory of Massless Pauli-Fierz Models. http://rene.ma.utexas.edu/mp_arc-bin/mpa?yn=03-198, 2003
[16] Georgescu, V., Gérard, C., Schach-Moeller, J.: Commutators, C0?semigroups and Resolvent Estimates. http://rene.ma.utexas.edu/mp_arc-bin/mpa?yn=03-197, 2003
[17] Haag, R., Hugenholtz, N. M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215-236 (1967) · Zbl 0171.47102 · doi:10.1007/BF01646342
[18] Jaksi?, V., Pillet, C.-A.: On a model for quantum friction. II. Fermi?s golden rule and dynamics at positive temperature. Commun. Math. Phys. 176(3), 619-644 (1996) · Zbl 0852.47038
[19] Jaksi?, V., Pillet, C.-A.: On a Model for Quantum Friction III. Ergodic Properties of the Spin-Boson System. Commun. Math. Phys. 178, 627-651 (1996) · Zbl 0864.47049
[20] Jaksi?, V., Pillet, C.-A.: A note on eigenvalues of Liouvilleans. J. Stat. Phys. 105(5-6), 937-941 (2001) · Zbl 0991.46037
[21] Merkli, M.: Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics. Commun. Math. Phys. 223, 327-362 (2001) · Zbl 0987.82009 · doi:10.1007/s002200100545
[22] Ogata, Y.: The Stability of the Non-Equilibrium Steady States. Commun. Math. Phys. 245(3), 577-609 (2004) · Zbl 1092.82026 · doi:10.1007/s00220-003-1011-5
[23] Simon, B.: The statistical mechanics of lattice gases. Princeton, NJ : Princeton University Press (Princeton series in physics), 1993 · Zbl 0804.60093
[24] Spohn, H.: Ground State(s) of the Spin-Boson Hamiltonian. Commun. Math. Phys. 123, 277-304 (1999) · Zbl 0667.60108 · doi:10.1007/BF01238859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.