×

Han’s model parameters for microalgae grown under intermittent illumination: determined using particle swarm optimization. (English) Zbl 1394.92111

J. Theor. Biol. 437, 29-35 (2018); corrigendum ibid. 469, 201 (2019).
Summary: This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han’s model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using particle swarm optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
92C80 Plant biology

Software:

Boids
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Abu-Ghosh, S.; Fixler, D.; Dubinsky, Z.; Iluz, D., Flashing light in microalgae biotechnology, Bioresour. Technol., 203, 357-363 (2016)
[2] Andras, P., A Bayesian interpretation of the particle swarm optimization and its kernel extension, PLoS ONE, 7, 11, e48710 (2012)
[3] Baklouti, M.; Faure, V.; Pawlowski, L.; Sciandra, A., Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular numerical tool (eco3m) dedicated to biogeochemical modelling, Prog. Oceanogr., 71, 1, 34-58 (2006)
[4] Banks, A.; Vincent, J.; Anyakoha, C., A review of particle swarm optimization. part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications, Nat. Comput., 7, 1, 109-124 (2007) · Zbl 1148.68375
[5] Barbosa, M. J.; Janssen, M.; Ham, N.; Tramper, J.; Wijffels, R. H., Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency, Biotechnol. Bioeng., 82, 2, 170-179 (2003)
[6] Béchet, Q.; Shilton, A.; Guieysse, B., Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation, Biotechnol. Adv., 31, 8, 1648-1663 (2013)
[7] Bernard, O., Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production, J. Process Control, 21, 10, 1378-1389 (2011)
[8] Bernardi, A.; Nikolaou, A.; Meneghesso, A.; Morosinotto, T.; Chachuat, B.; Bezzo, F., High-fidelity modelling methodology of light-limited photosynthetic production in microalgae, PLoS ONE, 11, 4, e0152387 (2016)
[9] Bitog, J. P.; Lee, I. B.; Lee, C. G.; Kim, K. S.; Hwang, H. S.; Hong, S. W.; Seo, I. H.; Kwon, K. S.; Mostafa, E., Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review, Comput. Electron. Agric., 76, 2, 131-147 (2011)
[10] Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 102, 1, 71-81 (2011)
[11] Chini Zittelli, G.; Lavista, F.; Bastianini, A.; Rodolfi, L.; Vincenzini, M.; Tredici, M. R., Production of eicosapentaenoic acid by Nannochloropsissp. cultures in outdoor tubular photobioreactors, J. Biotechnol., 70, 1, 299-312 (1999)
[12] Davis, R. E.; Fishman, D. B.; Frank, E. D.; Johnson, M. C.; Jones, S. B.; Kinchin, C. M.; Skaggs, R. L.; Venteris, E. R.; Wigmosta, M. S., Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale, Environ. Sci. Technol., 48, 10, 6035-6042 (2014)
[13] Del Campo, J. A.; Rodríguez, H.; Moreno, J.; Vargas, M.Á.; Rivas, J.; Guerrero, M. G., Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor, J. Biotechnol., 85, 3, 289-295 (2001)
[14] Eberhart, R.; Kennedy, J., A new optimizer using particle swarm theory, , Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, 39-43 (1995)
[15] Eilers, P. H.C.; Peeters, J. C.H., A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton, Ecol. Model., 42, 3, 199-215 (1988)
[16] Esposito, S.; Botte, V.; Iudicone, D.; Ribera d’Alcala’, M., Numerical analysis of cumulative impact of phytoplankton photoresponses to light variation on carbon assimilation, J. Theor. Biol., 261, 3, 361-371 (2009) · Zbl 1403.92124
[17] Farges, O., Conception optimale de centrales solaires à concentration: application aux centrales à tour et aux installations “beam down”. Phd thesis (2014), Ecole des Mines d’Albi-Carmaux
[18] Geider, R. J.; MacIntyre, H. L.; Kana, T. M., A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 4, 679-694 (1998)
[19] Grima, E. M.; Camacho, F. G.; Pérez, J. A.S.; Sevilla, J. M.F.; Fernández, F. G.A.; Gómez, A. C., A mathematical model of microalgal growth in light-limited chemostat culture, J. Chem. Technol. Biotechnol., 61, 2, 167-173 (1994)
[20] HAN, B.-P., Photosynthesis-irradiance response at physiological level: a mechanistic model, J. Theor. Biol., 213, 2, 121-127 (2001)
[21] HAN, B.-P., A mechanistic model of algal photoinhibition induced by photodamage to photosystem-II, J. Theor. Biol., 214, 4, 519-527 (2002)
[22] Hartmann, P.; Béchet, Q.; Bernard, O., The effect of photosynthesis time scales on microalgae productivity, Bioprocess. Biosyst. Eng., 37, 1, 17-25 (2013)
[23] Hartmann, P.; Demory, D.; Combe, C.; Hamouda, R.; Boulanger, A.-C.; Bristeau, M.-O.; Sainte-Marie, J.; Sialve, B.; Steyer, J.-P.; Rabouille, S., Growth Rate estimation of algae in raceway ponds: a novel approach, The 19th World Congress of the International Federation of Automatic Control (2014)
[24] Janssen, M.; Kuijpers, T. C.; Veldhoen, B.; Ternbach, M. B.; Tramper, J.; Mur, L. R.; Wijffels, R. H., Specific growth rate of Chlamydomonasreinhardtiiand Chlorellasorokiniana under medium duration light/dark cycles: 13-87 s, J. Biotechnol., 70, 1-3, 323-333 (1999)
[25] MacIntyre, H. L.; Kana, T. M.; Anning, T.; Geider, R. J., Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and Cyanobacteria1, J. Phycol., 38, 1, 17-38 (2002)
[26] Molina, E.; Fernández, J.; Acién, F. G.; Chisti, Y., Tubular photobioreactor design for algal cultures, J. Biotechnol., 92, 2, 113-131 (2001)
[27] Nikolaou, A.; Hartmann, P.; Sciandra, A.; Chachuat, B.; Bernard, O., Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth, J. Theor. Biol., 390, 61-72 (2016) · Zbl 1343.92547
[28] Packer, A.; Li, Y.; Andersen, T.; Hu, Q.; Kuang, Y.; Sommerfeld, M., Growth and neutral lipid synthesis in green microalgae: a mathematical model, Bioresour. Technol., 102, 1, 111-117 (2011)
[29] Quinn, J.; de Winter, L.; Bradley, T., Microalgae bulk growth model with application to industrial scale systems, Bioresour. Technol., 102, 8, 5083-5092 (2011)
[30] Rampure, M. R.; Kulkarni, A. A.; Ranade, V. V., Hydrodynamics of bubble column reactors at high gas velocity: experiments and computational fluid dynamics (CFD) simulations, Ind. Eng. Chem. Res., 46, 25, 8431-8447 (2007)
[31] Reynolds, C. W., Flocks, herds and schools: a distributed behavioral model, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 25-34 (1987), ACM: ACM New York, NY, USA
[32] Sato, T.; Yamada, D.; Hirabayashi, S., Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect, Energy Convers. Manage., 51, 6, 1196-1201 (2010)
[33] Shi, Y.; Eberhart, R. C., Parameter selection in particle swarm optimization, Evolutionary Programming VII, 591-600 (1998), Springer: Springer Berlin, Heidelberg
[34] Trelea, I. C., The particle swarm optimization algorithm: convergence analysis and parameter selection, Inf. Process. Lett., 85, 6, 317-325 (2003) · Zbl 1156.90463
[35] Undurraga, D.; Poirrier, P.; Chamy, R., Microalgae growth kinetic model based on the PSII quantum yield and its utilization in the operational curves construction, Algal Res., 17, 330-340 (2016)
[36] Wetter, M.; Wright, J., A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization, Build. Environ., 39, 8, 989-999 (2004)
[37] Wu, X.; Merchuk, J. C., A model integrating fluid dynamics in photosynthesis and photoinhibition processes, Chem. Eng. Sci., 56, 11, 3527-3538 (2001)
[38] Yang, J.; Rasa, E.; Tantayotai, P.; Scow, K. M.; Yuan, H.; Hristova, K. R., Mathematical model of Chlorellaminutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions, Bioresour. Technol., 102, 3, 3077-3082 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.