×

Higher derivative theories for interacting massless gravitons in Minkowski spacetime. (English) Zbl 1391.81115

Summary: We study a novel class of higher derivative theories for interacting massless gravitons in Minkowski spacetime. These theories were first discussed by Wald decades ago, and are characterized by scattering amplitudes essentially different from general relativity and many of its modifications. We discuss various aspects of these higher derivative theories, including the Lagrangian construction, violation of asymptotic causality, scattering amplitudes, non-renormalization, and possible implications in emergent gravitons from condensed matter systems.

MSC:

81T10 Model quantum field theories
81V17 Gravitational interaction in quantum theory
83A05 Special relativity
81U05 \(2\)-body potential quantum scattering theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bjerrum-Bohr, N. E.J.; Donoghue, J. F.; Holstein, B. R.; Planté, L.; Vanhove, P., Bending of light in quantum gravity, Phys. Rev. Lett., 114, (2015)
[2] Bjerrum-Bohr, N. E.J.; Donoghue, J. F.; El-Menoufi, B. K.; Holstein, B. R.; Planté, L.; Vanhove, P., The equivalence principle in a quantum world, Int. J. Mod. Phys. D, 24, (2015)
[3] Bjerrum-Bohr, N. E.J.; Donoghue, J. F.; Holstein, B. R.; Plante, L.; Vanhove, P., Light-like scattering in quantum gravity, J. High Energy Phys., 1611, (2016) · Zbl 1390.83057
[4] Bai, D.; Huang, Y., More on the bending of light in quantum gravity, Phys. Rev. D, 95, (2017)
[5] Bjerrum-Bohr, N. E.J.; Holstein, B. R.; Donoghue, J. F.; Planté, L.; Vanhove, P., Illuminating light bending, PoS CORFU, 2016, (2017)
[6] Wald, R. M., Spin-2 fields and general covariance, Phys. Rev. D, 33, 3613, (1986)
[7] Cutler, C.; Wald, R. M., A new type of gauge invariance for a collection of massless spin-2 fields. 1. existence and uniqueness, Class. Quantum Gravity, 4, 1267, (1987) · Zbl 0623.53046
[8] Wald, R. M., A new type of gauge invariance for a collection of massless spin-2 fields. 2. geometrical interpretation, Class. Quantum Gravity, 4, 1279, (1987) · Zbl 0623.53047
[9] Heiderich, K.; Unruh, W., Spin-2 fields, general covariance, and conformal invariance, Phys. Rev. D, 38, 490, (1988)
[10] Heiderich, K. R.; Unruh, W. G., Nonlinear, noncovariant spin two theories, Phys. Rev. D, 42, 2057, (1990)
[11] Boulanger, N.; Damour, T.; Gualtieri, L.; Henneaux, M., Inconsistency of interacting, multigraviton theories, Nucl. Phys. B, 597, 127, (2001) · Zbl 0972.83051
[12] Horava, P.; Melby-Thompson, C. M., General covariance in quantum gravity at a Lifshitz point, Phys. Rev. D, 82, (2010)
[13] de Rham, C.; Gabadadze, G.; Heisenberg, L.; Pirtskhalava, D., Nonrenormalization and naturalness in a class of scalar-tensor theories, Phys. Rev. D, 87, (2013)
[14] Hinterbichler, K., Ghost-free derivative interactions for a massive graviton, J. High Energy Phys., 1310, (2013) · Zbl 1342.83299
[15] Hertzberg, M. P., Gravitation, causality, and quantum consistency · Zbl 1414.81024
[16] Hertzberg, M. P.; Sandora, M., General relativity from causality, J. High Energy Phys., 1709, (2017) · Zbl 1382.83012
[17] Camanho, X. O.; Edelstein, J. D.; Maldacena, J.; Zhiboedov, A., Causality constraints on corrections to the graviton three-point coupling, J. High Energy Phys., 1602, (2016) · Zbl 1388.83093
[18] Metsaev, R. R., Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B, 759, 147, (2006) · Zbl 1116.81042
[19] Metsaev, R. R.; Tseytlin, A. A., Curvature cubed terms in string theory effective actions, Phys. Lett. B, 185, 52, (1987)
[20] Bai, D.; Xing, Y. H., On the uniqueness of ghost-free special gravity, Commun. Theor. Phys., 68, 329, (2017) · Zbl 1377.83071
[21] Lovelock, D., The Einstein tensor and its generalizations, J. Math. Phys., 12, 498, (1971) · Zbl 0213.48801
[22] Lovelock, D., The four-dimensionality of space and the Einstein tensor, J. Math. Phys., 13, 874, (1972) · Zbl 0234.53020
[23] Beltran Jimenez, J.; Cembranos, J. A.R.; Sanchez Velazquez, J. M., On scalar and vector fields coupled to the energy-momentum tensor · Zbl 1391.83094
[24] Shapiro, I. I., Fourth test of general relativity, Phys. Rev. Lett., 13, 789, (1964)
[25] Gao, S.; Wald, R. M., Theorems on gravitational time delay and related issues, Class. Quantum Gravity, 17, 4999, (2000) · Zbl 0972.83015
[26] Deser, S., Self-interaction and gauge invariance, Gen. Relativ. Gravit., 1, 9, (1970)
[27] Deser, S., Gravity from self-interaction in a curved background, Class. Quantum Gravity, 4, (1987) · Zbl 0645.53057
[28] Padmanabhan, T., From gravitons to gravity: myths and reality, Int. J. Mod. Phys. D, 17, 367, (2008) · Zbl 1153.83019
[29] Deser, S., Gravity from self-interaction redux, Gen. Relativ. Gravit., 42, 641, (2010) · Zbl 1186.83014
[30] Bai, D., Softness, polynomial boundedness and amplitudes’ positivity, Europhys. Lett., 120, (2017)
[31] Scherk, J.; Schwarz, J. H., Dual models for nonhadrons, Nucl. Phys. B, 81, 118, (1974)
[32] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys. B, 715, 499, (2005) · Zbl 1207.81088
[33] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, (2005)
[34] Benincasa, P.; Cachazo, F., Consistency conditions on the S-matrix of massless particles
[35] Cachazo, F.; Svrcek, P., Tree level recursion relations in general relativity
[36] Benincasa, P.; Boucher-Veronneau, C.; Cachazo, F., Taming tree amplitudes in general relativity, J. High Energy Phys., 0711, (2007) · Zbl 1245.83012
[37] Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M., Aspects of galileon non-renormalization · Zbl 1390.83279
[38] Zhang, S. C.; Hu, J. P., A four-dimensional generalization of the quantum Hall effect, Science, 294, 823, (2001)
[39] Kraus, Y. E.; Ringel, Z.; Zilberberg, O., Four-dimensional quantum Hall effect in a two-dimensional quasicrystal, Phys. Rev. Lett., 111, (2013)
[40] Price, H. M.; Zilberberg, O.; Ozawa, T.; Carusotto, I.; Goldman, N., Four-dimensional quantum Hall effect with ultracold atoms, Phys. Rev. Lett., 115, (2015)
[41] Ozawa, T.; Price, H. M.; Goldman, N.; Zilberberg, O.; Carusotto, I., Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics, Phys. Rev. A, 93, (2016)
[42] Gu, Z. C.; Wen, X. G., Emergence of helicity ± 2 modes (gravitons) from qubit models, Nucl. Phys. B, 863, 90, (2012) · Zbl 1246.83076
[43] Zaanen, J.; Beekman, A. J., The emergence of gauge invariance: the stay-at-home gauge versus local-global duality, Ann. Phys., 327, 1146, (2012) · Zbl 1244.82087
[44] Broedel, J.; Dixon, L. J., Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, J. High Energy Phys., 1210, (2012)
[45] He, S.; Zhang, Y., New formulas for amplitudes from higher-dimensional operators · Zbl 1377.81222
[46] Cachazo, F.; He, S.; Yuan, E. Y., Scattering equations and Kawai-lewellen-tye orthogonality, Phys. Rev. D, 90, (2014)
[47] Cachazo, F.; He, S.; Yuan, E. Y., Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett., 113, (2014)
[48] Nutma, T., Xtras: a field-theory inspired xact package for Mathematica, Comput. Phys. Commun., 185, 1719, (2014) · Zbl 1348.70003
[49] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., Feynrules 2.0 - a complete toolbox for tree-level phenomenology, Comput. Phys. Commun., 185, 2250, (2014)
[50] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418, (2001) · Zbl 0994.81082
[51] Groß, C.; Hahn, T.; Heinemeyer, S.; von der Pahlen, F.; Rzehak, H.; Schappacher, C., New developments in formcalc 8.4, PoS LL, 2014, (2014) · Zbl 1348.81035
[52] Maitre, D.; Mastrolia, P., S@M, a Mathematica implementation of the spinor-helicity formalism, Comput. Phys. Commun., 179, 501, (2008) · Zbl 1197.83007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.