Jordan, F.; Kalantari, I.; Pajoohesh, H. A general separation theorem for various structures. (English) Zbl 07301178 Acta Math. Hung. 162, No. 1, 345-363 (2020). Reviewer: Ioan Tomescu (Bucureşti) MSC: 06A15 05B35 PDF BibTeX XML Cite \textit{F. Jordan} et al., Acta Math. Hung. 162, No. 1, 345--363 (2020; Zbl 07301178) Full Text: DOI
Nagaoka, Takahiro; Yazawa, Akiko Strict log-concavity of the Kirchhoff polynomial and its applications. (English) Zbl 1447.05051 Sémin. Lothar. Comb. 84B, 84B.38, 12 p. (2020). MSC: 05B35 52B40 13E10 13H10 PDF BibTeX XML Cite \textit{T. Nagaoka} and \textit{A. Yazawa}, Sémin. Lothar. Comb. 84B, 84B.38, 12 p. (2020; Zbl 1447.05051) Full Text: Link
Papalamprou, Konstantinos; Pitsoulis, Leonidas S.; Vretta, Eleni-Maria E. Binary signed-graphic matroids: representations and recognition algorithms. (English) Zbl 1440.05057 Discrete Math. 343, No. 7, Article ID 111887, 13 p. (2020). MSC: 05B35 52B40 05C22 05C85 PDF BibTeX XML Cite \textit{K. Papalamprou} et al., Discrete Math. 343, No. 7, Article ID 111887, 13 p. (2020; Zbl 1440.05057) Full Text: DOI
Bowler, Nathan; Funk, Daryl; Slilaty, Daniel Describing quasi-graphic matroids. (English) Zbl 1433.05066 Eur. J. Comb. 85, Article ID 103062, 26 p. (2020). MSC: 05B35 52B40 PDF BibTeX XML Cite \textit{N. Bowler} et al., Eur. J. Comb. 85, Article ID 103062, 26 p. (2020; Zbl 1433.05066) Full Text: DOI
Braden, Tom; Vysogorets, Artem Kazhdan-Lusztig polynomials under deletion. (English) Zbl 1431.05150 Electron. J. Comb. 27, No. 1, Research Paper P1.17, 17 p. (2020). MSC: 05E10 05B35 52B40 05C31 PDF BibTeX XML Cite \textit{T. Braden} and \textit{A. Vysogorets}, Electron. J. Comb. 27, No. 1, Research Paper P1.17, 17 p. (2020; Zbl 1431.05150) Full Text: Link
Ikeshita, Rintaro; Tanigawa, Shin-ichi Count matroids of group-labeled graphs. (English) Zbl 1424.05039 Combinatorica 38, No. 5, 1101-1127 (2018). Reviewer: Charles J. Colbourn (Tempe) MSC: 05B35 52C25 52B40 PDF BibTeX XML Cite \textit{R. Ikeshita} and \textit{S.-i. Tanigawa}, Combinatorica 38, No. 5, 1101--1127 (2018; Zbl 1424.05039) Full Text: DOI arXiv
Chen, Rong; Geelen, Jim Infinitely many excluded minors for frame matroids and for lifted-graphic matroids. (English) Zbl 1397.05181 J. Comb. Theory, Ser. B 133, 46-53 (2018). MSC: 05C83 05B35 52B40 PDF BibTeX XML Cite \textit{R. Chen} and \textit{J. Geelen}, J. Comb. Theory, Ser. B 133, 46--53 (2018; Zbl 1397.05181) Full Text: DOI arXiv
Goyal, Prachi; Misra, Pranabendu; Panolan, Fahad; Philip, Geevarghese; Saurabh, Saket Finding even subgraphs even faster. (English) Zbl 1404.68050 J. Comput. Syst. Sci. 97, 1-13 (2018). Reviewer: Vladimír Lacko (Košice) MSC: 68Q25 05B35 05C85 68R10 90C27 PDF BibTeX XML Cite \textit{P. Goyal} et al., J. Comput. Syst. Sci. 97, 1--13 (2018; Zbl 1404.68050) Full Text: DOI arXiv
Borse, Y. M.; Mundhe, Ganesh Graphic and cographic \(\Gamma\)-extensions of binary matroids. (English) Zbl 1392.05024 Discuss. Math., Graph Theory 38, No. 4, 889-898 (2018). MSC: 05B35 05C50 05C83 52B40 PDF BibTeX XML Cite \textit{Y. M. Borse} and \textit{G. Mundhe}, Discuss. Math., Graph Theory 38, No. 4, 889--898 (2018; Zbl 1392.05024) Full Text: DOI
Bowler, Nathan; Carmesin, Johannes; Christian, Robin Infinite graphic matroids. (English) Zbl 1413.05042 Combinatorica 38, No. 2, 305-339 (2018). MSC: 05B35 05C63 52B40 05C83 PDF BibTeX XML Cite \textit{N. Bowler} et al., Combinatorica 38, No. 2, 305--339 (2018; Zbl 1413.05042) Full Text: DOI
Wagner, Donald K. A characterization of graphic matroids based on circuit orderings. (English) Zbl 1387.05041 SIAM J. Discrete Math. 32, No. 2, 1139-1144 (2018). MSC: 05B35 05C50 05C10 52B40 PDF BibTeX XML Cite \textit{D. K. Wagner}, SIAM J. Discrete Math. 32, No. 2, 1139--1144 (2018; Zbl 1387.05041) Full Text: DOI
Geelen, Jim; Kapadia, Rohan Computing girth and cogirth in perturbed graphic matroids. (English) Zbl 1413.05043 Combinatorica 38, No. 1, 167-191 (2018). MSC: 05B35 94B05 90C27 68W20 52B40 PDF BibTeX XML Cite \textit{J. Geelen} and \textit{R. Kapadia}, Combinatorica 38, No. 1, 167--191 (2018; Zbl 1413.05043) Full Text: DOI arXiv
Funk, Daryl; Mayhew, Dillon On excluded minors for classes of graphical matroids. (English) Zbl 1384.05143 Discrete Math. 341, No. 6, 1509-1522 (2018). MSC: 05C83 05B35 52B40 PDF BibTeX XML Cite \textit{D. Funk} and \textit{D. Mayhew}, Discrete Math. 341, No. 6, 1509--1522 (2018; Zbl 1384.05143) Full Text: DOI arXiv
Geelen, Jim; Gerards, Bert; Whittle, Geoff Quasi-graphic matroids. (English) Zbl 1387.05038 J. Graph Theory 87, No. 2, 253-264 (2018); retraction and replacement statement ibid. 87, No. 2, 265 (2018). MSC: 05B35 PDF BibTeX XML Cite \textit{J. Geelen} et al., J. Graph Theory 87, No. 2, 253--264 (2018; Zbl 1387.05038) Full Text: DOI
Chen, Rong; Whittle, Geoff On recognizing frame and lifted-graphic matroids. (English) Zbl 1387.05037 J. Graph Theory 87, No. 1, 72-76 (2018). MSC: 05B35 PDF BibTeX XML Cite \textit{R. Chen} and \textit{G. Whittle}, J. Graph Theory 87, No. 1, 72--76 (2018; Zbl 1387.05037) Full Text: DOI
Aguiar, Marcelo; Chan, Swee Hong Toric arrangements associated to graphs. (English) Zbl 1385.05027 Sémin. Lothar. Comb. 78B, 78B.84, 12 p. (2017). MSC: 05B35 05C31 14M25 52C35 PDF BibTeX XML Cite \textit{M. Aguiar} and \textit{S. H. Chan}, Sémin. Lothar. Comb. 78B, 78B.84, 12 p. (2017; Zbl 1385.05027) Full Text: Link
Papalamprou, Konstantinos; Pitsoulis, Leonidas S. Signed-graphic matroids with all-graphic cocircuits. (English) Zbl 1370.05032 Discrete Math. 340, No. 12, 2889-2899 (2017). MSC: 05B35 05C22 52B40 PDF BibTeX XML Cite \textit{K. Papalamprou} and \textit{L. S. Pitsoulis}, Discrete Math. 340, No. 12, 2889--2899 (2017; Zbl 1370.05032) Full Text: DOI
Chen, Rong The excluded minors for the class of matroids that are graphic or bicircular lift. (English) Zbl 1351.05048 Adv. Appl. Math. 83, 97-114 (2017). MSC: 05B35 05C22 05C83 52B40 PDF BibTeX XML Cite \textit{R. Chen}, Adv. Appl. Math. 83, 97--114 (2017; Zbl 1351.05048) Full Text: DOI arXiv
Traldi, Lorenzo Notes on a theorem of Naji. (English) Zbl 1347.05096 Discrete Math. 340, No. 1, 3217-3234 (2017). MSC: 05C25 05C38 05B35 05C10 52B40 PDF BibTeX XML Cite \textit{L. Traldi}, Discrete Math. 340, No. 1, 3217--3234 (2017; Zbl 1347.05096) Full Text: DOI
Moffatt, Iain; Mphako-Banda, Eunice Handle slides for delta-matroids. (English) Zbl 1348.05109 Eur. J. Comb. 59, 23-33 (2017). MSC: 05C38 52B40 PDF BibTeX XML Cite \textit{I. Moffatt} and \textit{E. Mphako-Banda}, Eur. J. Comb. 59, 23--33 (2017; Zbl 1348.05109) Full Text: DOI arXiv
Csehi, Csongor Gy.; Recski, András Matroid union – graphic? binary? neither? (English) Zbl 1339.05049 Discrete Appl. Math. 209, 75-83 (2016). MSC: 05B35 52B40 PDF BibTeX XML Cite \textit{C. Gy. Csehi} and \textit{A. Recski}, Discrete Appl. Math. 209, 75--83 (2016; Zbl 1339.05049) Full Text: DOI
Wagner, Donald K. A circuit characterization of graphic matroids. (English) Zbl 1332.05032 J. Comb. Theory, Ser. B 118, 284-290 (2016). MSC: 05B35 PDF BibTeX XML Cite \textit{D. K. Wagner}, J. Comb. Theory, Ser. B 118, 284--290 (2016; Zbl 1332.05032) Full Text: DOI
Gordon, Gary; McNulty, Jennifer; Neudauer, Nancy Ann Fixing numbers for matroids. (English) Zbl 1332.05029 Graphs Comb. 32, No. 1, 133-146 (2016). Reviewer: Ioan Tomescu (Bucureşti) MSC: 05B35 05C80 20B99 PDF BibTeX XML Cite \textit{G. Gordon} et al., Graphs Comb. 32, No. 1, 133--146 (2016; Zbl 1332.05029) Full Text: DOI arXiv
Borse, Y. M.; Shikare, M. M.; Pirouz, Naiyer A characterization of graphic matroids which yield biographic splittings matroids. (English) Zbl 1349.05050 Ars Comb. 118, 357-366 (2015). MSC: 05B35 05C50 05C83 52B40 PDF BibTeX XML Cite \textit{Y. M. Borse} et al., Ars Comb. 118, 357--366 (2015; Zbl 1349.05050)
Azanchiler, H. On extension of graphic matroids. (English) Zbl 1318.05014 Lobachevskii J. Math. 36, No. 1, 38-47 (2015). MSC: 05B35 PDF BibTeX XML Cite \textit{H. Azanchiler}, Lobachevskii J. Math. 36, No. 1, 38--47 (2015; Zbl 1318.05014) Full Text: DOI
Pirouz, Naiyer Graphic splitting of cographic matroids. (English) Zbl 1307.05042 Discuss. Math., Graph Theory 35, No. 1, 95-104 (2015). MSC: 05B35 05C50 05C83 PDF BibTeX XML Cite \textit{N. Pirouz}, Discuss. Math., Graph Theory 35, No. 1, 95--104 (2015; Zbl 1307.05042) Full Text: DOI
Wang, Shiping; Zhu, Qingxin; Zhu, William; Min, Fan Graph and matrix approaches to rough sets through matroids. (English) Zbl 1355.68265 Inf. Sci. 288, 1-11 (2014). MSC: 68T37 05B35 05C50 PDF BibTeX XML Cite \textit{S. Wang} et al., Inf. Sci. 288, 1--11 (2014; Zbl 1355.68265) Full Text: DOI
Sivaraman, Vaidy Bicircular signed-graphic matroids. (English) Zbl 1288.05035 Discrete Math. 328, 1-4 (2014). MSC: 05B35 05D15 PDF BibTeX XML Cite \textit{V. Sivaraman}, Discrete Math. 328, 1--4 (2014; Zbl 1288.05035) Full Text: DOI arXiv
Pitsoulis, Leonidas S. Topics in matroid theory. (English) Zbl 1319.05033 SpringerBriefs in Optimization. New York, NY: Springer (ISBN 978-1-4614-8956-6/pbk; 978-1-4614-8957-3/ebook). xiv, 127 p. (2014). Reviewer: Brigitte Servatius (Worcester) MSC: 05B35 05-02 05C10 05C22 PDF BibTeX XML Cite \textit{L. S. Pitsoulis}, Topics in matroid theory. New York, NY: Springer (2014; Zbl 1319.05033) Full Text: DOI
Chun, Deborah Matroids with every two elements in a 4-circuit. (English) Zbl 1313.05039 Ars Comb. 112, 189-191 (2013). MSC: 05B35 05C38 PDF BibTeX XML Cite \textit{D. Chun}, Ars Comb. 112, 189--191 (2013; Zbl 1313.05039)
Borse, Y. M. Splitting lemma for 2-connected graphs. (English) Zbl 1257.05075 ISRN Discrete Math. 2012, Article ID 850538, 7 p. (2012). MSC: 05C40 05C45 05B35 PDF BibTeX XML Cite \textit{Y. M. Borse}, ISRN Discrete Math. 2012, Article ID 850538, 7 p. (2012; Zbl 1257.05075) Full Text: DOI
Shikare, M. M.; Dalvi, K. V.; Dhotre, S. B. Splitting off operation for binary matroids and its applications. (English) Zbl 1233.05081 Graphs Comb. 27, No. 6, 871-882 (2011). MSC: 05B35 PDF BibTeX XML Cite \textit{M. M. Shikare} et al., Graphs Comb. 27, No. 6, 871--882 (2011; Zbl 1233.05081) Full Text: DOI
Han, Boong Bi; Ahn, Seung Ho Representations of \(U_{3,6}\) and \(AG(2, 3)\). (English) Zbl 1237.05035 Honam Math. J. 33, No. 3, 381-391 (2011). MSC: 05B35 60J10 PDF BibTeX XML Cite \textit{B. B. Han} and \textit{S. H. Ahn}, Honam Math. J. 33, No. 3, 381--391 (2011; Zbl 1237.05035) Full Text: DOI Link
Dalvi, Kiran; Borse, Y. M.; Shikare, M. M. Forbidden-minor characterization for the class of cographic element splitting matroids. (English) Zbl 1229.05066 Discuss. Math., Graph Theory 31, No. 3, 601-606 (2011). MSC: 05B35 PDF BibTeX XML Cite \textit{K. Dalvi} et al., Discuss. Math., Graph Theory 31, No. 3, 601--606 (2011; Zbl 1229.05066) Full Text: DOI
Dalvi, Kiran Vishnupant; Borse, Y. M.; Shikare, M. M. Forbidden-minors for graphic and cographic es-splitting matroids. (English) Zbl 1255.05037 Lobachevskii J. Math. 31, No. 1, 27-35 (2010). MSC: 05B35 05C83 PDF BibTeX XML Cite \textit{K. V. Dalvi} et al., Lobachevskii J. Math. 31, No. 1, 27--35 (2010; Zbl 1255.05037) Full Text: DOI
Shikare, M. M.; Waphare, B. N. Excluded-minors for the class of graphic splitting matroids. (English) Zbl 1249.05048 Ars Comb. 97, 111-127 (2010). MSC: 05B35 05C75 05C83 PDF BibTeX XML Cite \textit{M. M. Shikare} and \textit{B. N. Waphare}, Ars Comb. 97, 111--127 (2010; Zbl 1249.05048)
Huang, Chun-E Graphic and representable fuzzifying matroids. (English) Zbl 1214.05080 Proyecciones 29, No. 1, 17-30 (2010). MSC: 05C50 05B35 15A03 52B40 PDF BibTeX XML Cite \textit{C.-E Huang}, Proyecciones 29, No. 1, 17--30 (2010; Zbl 1214.05080) Full Text: DOI
Lemos, Manoel; Reid, Talmage James; Wu, Haidong Characterizing 3-connected planar graphs and graphic matroids. (English) Zbl 1231.05059 J. Graph Theory 64, No. 2, 165-174 (2010). MSC: 05B35 05C10 05C40 PDF BibTeX XML Cite \textit{M. Lemos} et al., J. Graph Theory 64, No. 2, 165--174 (2010; Zbl 1231.05059) Full Text: DOI
Wagner, Donald K. On Mighton’s characterization of graphic matroids. (English) Zbl 1203.05030 J. Comb. Theory, Ser. B 100, No. 5, 493-496 (2010). MSC: 05B35 PDF BibTeX XML Cite \textit{D. K. Wagner}, J. Comb. Theory, Ser. B 100, No. 5, 493--496 (2010; Zbl 1203.05030) Full Text: DOI
Maffioli, Francesco; Salvi, Norma Zagaglia A characterization of the base-matroids of a graphic matroid. (English) Zbl 1203.05029 Contrib. Discrete Math. 5, No. 1, 1-6 (2010). MSC: 05B35 90C27 PDF BibTeX XML Cite \textit{F. Maffioli} and \textit{N. Z. Salvi}, Contrib. Discrete Math. 5, No. 1, 1--6 (2010; Zbl 1203.05029) Full Text: Link
Bhattacharyya, Arnab; Chen, Victor; Sudan, Madhu; Xie, Ning Testing linear-invariant non-linear properties. (English) Zbl 1236.68289 Albers, Susanne (ed.) et al., STACS 2009. 26th international symposium on theoretical aspects of computer science, Freiburg, Germany, February 26–28, 2009. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik (ISBN 978-3-939897-09-5). LIPIcs – Leibniz International Proceedings in Informatics 3, 135-146, electronic only (2009). MSC: 68W20 68Q25 PDF BibTeX XML Cite \textit{A. Bhattacharyya} et al., LIPIcs -- Leibniz Int. Proc. Inform. 3, 135--146 (2009; Zbl 1236.68289) Full Text: DOI Link arXiv
Dalvi, Kiran; Borse, Y. M.; Shikare, M. M. Forbidden-minor characterization for the class of graphic element splitting matroids. (English) Zbl 1194.05017 Discuss. Math., Graph Theory 29, No. 3, 629-644 (2009). MSC: 05B35 PDF BibTeX XML Cite \textit{K. Dalvi} et al., Discuss. Math., Graph Theory 29, No. 3, 629--644 (2009; Zbl 1194.05017) Full Text: DOI
Pitsoulis, Leonidas; Papalamprou, Konstantinos; Appa, Gautam; Kotnyek, Balázs On the representability of totally unimodular matrices on bidirected graphs. (English) Zbl 1182.05120 Discrete Math. 309, No. 16, 5024-5042 (2009). MSC: 05C85 05C50 PDF BibTeX XML Cite \textit{L. Pitsoulis} et al., Discrete Math. 309, No. 16, 5024--5042 (2009; Zbl 1182.05120) Full Text: DOI arXiv
Apollonio, Nicola; Caramia, Massimiliano A superclass of edge-path-tree graphs with few cliques. (English) Zbl 1200.05151 Oper. Res. Lett. 37, No. 5, 351-355 (2009). MSC: 05C69 05C85 90C27 PDF BibTeX XML Cite \textit{N. Apollonio} and \textit{M. Caramia}, Oper. Res. Lett. 37, No. 5, 351--355 (2009; Zbl 1200.05151) Full Text: DOI
Oum, Sang-Il Excluding a bipartite circle graph from line graphs. (English) Zbl 1215.05175 J. Graph Theory 60, No. 3, 183-203 (2009). MSC: 05C83 05B35 PDF BibTeX XML Cite \textit{S.-I. Oum}, J. Graph Theory 60, No. 3, 183--203 (2009; Zbl 1215.05175) Full Text: DOI
Choe, Youngbin A combinatorial proof of the Rayleigh formula for graphs. (English) Zbl 1173.05347 Discrete Math. 308, No. 24, 5944-5953 (2008). MSC: 05C83 05B35 05C05 05C80 PDF BibTeX XML Cite \textit{Y. Choe}, Discrete Math. 308, No. 24, 5944--5953 (2008; Zbl 1173.05347) Full Text: DOI
Mighton, John A new characterization of graphic matroids. (English) Zbl 1170.05020 J. Comb. Theory, Ser. B 98, No. 6, 1253-1258 (2008). Reviewer: Michael J. Falk (Flagstaff) MSC: 05B35 PDF BibTeX XML Cite \textit{J. Mighton}, J. Comb. Theory, Ser. B 98, No. 6, 1253--1258 (2008; Zbl 1170.05020) Full Text: DOI
Blasiak, Jonah The toric ideal of a graphic matroid is generated by quadrics. (English) Zbl 1212.05030 Combinatorica 28, No. 3, 283-297 (2008). MSC: 05B35 05C05 PDF BibTeX XML Cite \textit{J. Blasiak}, Combinatorica 28, No. 3, 283--297 (2008; Zbl 1212.05030) Full Text: DOI arXiv
Bang-Jensen, Jørgen; Gonçalves, Daniel; Gørtz, Inge Li Finding well-balanced pairs of edge-disjoint trees in edge-weighted graphs. (English) Zbl 1142.05352 Discrete Optim. 4, No. 3-4, 334-348 (2007). MSC: 05C70 90C35 05B35 68R10 PDF BibTeX XML Cite \textit{J. Bang-Jensen} et al., Discrete Optim. 4, No. 3--4, 334--348 (2007; Zbl 1142.05352) Full Text: DOI
Geelen, Jim; Gerards, Bert Regular matroid decomposition via signed graphs. (English) Zbl 1055.05024 J. Graph Theory 48, No. 1, 74-84 (2005). MSC: 05B35 05C22 PDF BibTeX XML Cite \textit{J. Geelen} and \textit{B. Gerards}, J. Graph Theory 48, No. 1, 74--84 (2005; Zbl 1055.05024) Full Text: DOI
Maffioli, Francesco; Salvi, Norma Zagaglia A particular class of graphic matroids. (English) Zbl 1152.05315 Liberti, Leo (ed.) et al., Workshop on graphs and combinatorial optimization. Papers from the workshop, Como, Italy, May 31, 2004. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 17, 219-222 (2004). MSC: 05B35 90C27 PDF BibTeX XML Cite \textit{F. Maffioli} and \textit{N. Z. Salvi}, Electron. Notes Discrete Math. 17, 219--222 (2004; Zbl 1152.05315) Full Text: DOI
Zaslavsky, Thomas Biased graphs IV: Geometrical realizations. (English) Zbl 1031.05034 J. Comb. Theory, Ser. B 89, No. 2, 231-297 (2003). MSC: 05B35 05C22 03B99 05A15 05C50 51A45 52C35 PDF BibTeX XML Cite \textit{T. Zaslavsky}, J. Comb. Theory, Ser. B 89, No. 2, 231--297 (2003; Zbl 1031.05034) Full Text: DOI
Frank, András; Király, Tamás; Kriesell, Matthias On decomposing a hypergraph into \(k\) connected sub-hypergraphs. (English) Zbl 1022.05053 Discrete Appl. Math. 131, No. 2, 373-383 (2003). MSC: 05C65 05C70 05C05 05B35 PDF BibTeX XML Cite \textit{A. Frank} et al., Discrete Appl. Math. 131, No. 2, 373--383 (2003; Zbl 1022.05053) Full Text: DOI
Szigeti, Zoltán On the graphic matroid parity problem. (English) Zbl 1029.05027 J. Comb. Theory, Ser. B 88, No. 2, 247-260 (2003). Reviewer: Ian Anderson (Glasgow) MSC: 05B35 PDF BibTeX XML Cite \textit{Z. Szigeti}, J. Comb. Theory, Ser. B 88, No. 2, 247--260 (2003; Zbl 1029.05027) Full Text: DOI
Zaslavsky, Thomas Faces of a hyperplane arrangement enumerated by ideal dimension, with application to plane, plaids, and Shi. (English) Zbl 1041.52021 Geom. Dedicata 98, 63-80 (2003). Reviewer: Kelly J. Pearson (Murray) MSC: 52C35 05A15 05B35 05C22 PDF BibTeX XML Cite \textit{T. Zaslavsky}, Geom. Dedicata 98, 63--80 (2003; Zbl 1041.52021) Full Text: DOI
Kingan, S. R.; Lemos, Manoel Almost-graphic matroids. (English) Zbl 1010.05017 Adv. Appl. Math. 28, No. 3-4, 438-477 (2002). Reviewer: James F.Lawrence (Fairfax) MSC: 05B35 PDF BibTeX XML Cite \textit{S. R. Kingan} and \textit{M. Lemos}, Adv. Appl. Math. 28, No. 3--4, 438--477 (2002; Zbl 1010.05017) Full Text: DOI
Blum, Stefan Base-sortable matroids and Koszulness of semigroup rings. (English) Zbl 0986.05027 Eur. J. Comb. 22, No. 7, 937-951 (2001). MSC: 05B35 20M25 PDF BibTeX XML Cite \textit{S. Blum}, Eur. J. Comb. 22, No. 7, 937--951 (2001; Zbl 0986.05027) Full Text: DOI
Wu, Pou-Lin On large circuits in matroids. (English) Zbl 0982.05031 Graphs Comb. 17, No. 2, 365-388 (2001). Reviewer: Raul Cordovil (Lisboa) MSC: 05B35 PDF BibTeX XML Cite \textit{P.-L. Wu}, Graphs Comb. 17, No. 2, 365--388 (2001; Zbl 0982.05031) Full Text: DOI
Keijsper, J. An algorithm for packing connectors. (English) Zbl 1023.05113 J. Comb. Theory, Ser. B 74, No. 2, 397-404 (1998). MSC: 05C70 05B35 PDF BibTeX XML Cite \textit{J. Keijsper}, J. Comb. Theory, Ser. B 74, No. 2, 397--404 (1998; Zbl 1023.05113) Full Text: DOI
Bouchet, André; Ghier, Laurence Connectivity and \(\beta\)-invariants of isotropic systems and 4-regular graphs. (English) Zbl 0870.05013 Discrete Math. 161, No. 1-3, 25-44 (1996). MSC: 05B35 05C40 PDF BibTeX XML Cite \textit{A. Bouchet} and \textit{L. Ghier}, Discrete Math. 161, No. 1--3, 25--44 (1996; Zbl 0870.05013) Full Text: DOI
Gerards, A. M. H. On Tutte’s characterization of graphic matroids—a graphic proof. (English) Zbl 0836.05017 J. Graph Theory 20, No. 3, 351-359 (1995). Reviewer: A.Recski (Budapest) MSC: 05B35 PDF BibTeX XML Cite \textit{A. M. H. Gerards}, J. Graph Theory 20, No. 3, 351--359 (1995; Zbl 0836.05017) Full Text: DOI
Recski, András Elementary strong maps of graphic matroids. II. (English) Zbl 0802.05027 Graphs Comb. 10, No. 2, 205-206 (1994). MSC: 05B35 05C99 PDF BibTeX XML Cite \textit{A. Recski}, Graphs Comb. 10, No. 2, 205--206 (1994; Zbl 0802.05027) Full Text: DOI
Vertigan, Dirk; Whittle, Geoff Recognizing polymatroids associated with hypergraphs. (English) Zbl 0793.05045 Comb. Probab. Comput. 2, No. 4, 519-530 (1993). MSC: 05B35 05C65 PDF BibTeX XML Cite \textit{D. Vertigan} and \textit{G. Whittle}, Comb. Probab. Comput. 2, No. 4, 519--530 (1993; Zbl 0793.05045) Full Text: DOI
Tomescu, Ioan Ordered \(h\)-hypertrees. (English) Zbl 0772.05075 Discrete Math. 105, No. 1-3, 241-248 (1992). Reviewer: I.Tomescu (Bucureşti) MSC: 05C65 05C05 05C38 05B35 06F99 PDF BibTeX XML Cite \textit{I. Tomescu}, Discrete Math. 105, No. 1--3, 241--248 (1992; Zbl 0772.05075) Full Text: DOI
Solé, Patrick Covering codes and combinatorial optimization. (English) Zbl 0767.94016 Applied algebra, algebraic algorithms and error-correcting codes, Proc. 9th Int. Symp., AAECC-9, New Orleans/LA (USA) 1991, Lect. Notes Comput. Sci. 539, 426-433 (1991). MSC: 94B25 94B15 PDF BibTeX XML Cite \textit{P. Solé}, Lect. Notes Comput. Sci. 539, 426--433 (1991; Zbl 0767.94016)
Reid, Talmage James Triangles in 3-connected matroids. (English) Zbl 0760.05020 Discrete Math. 90, No. 3, 281-296 (1991). Reviewer: J.G.Oxley (Baton Rouge) MSC: 05B35 PDF BibTeX XML Cite \textit{T. J. Reid}, Discrete Math. 90, No. 3, 281--296 (1991; Zbl 0760.05020) Full Text: DOI
Ziegler, Günter M. Binary supersolvable matroids and modular constructions. (English) Zbl 0760.05022 Proc. Am. Math. Soc. 113, No. 3, 817-829 (1991). Reviewer: J.G.Oxley (Baton Rouge) MSC: 05B35 06C10 PDF BibTeX XML Cite \textit{G. M. Ziegler}, Proc. Am. Math. Soc. 113, No. 3, 817--829 (1991; Zbl 0760.05022) Full Text: DOI
Zaslavsky, Thomas Biased graphs. II: The three matroids. (English) Zbl 0763.05096 J. Comb. Theory, Ser. B 51, No. 1, 46-72 (1991). MSC: 05C99 05B35 05C38 PDF BibTeX XML Cite \textit{T. Zaslavsky}, J. Comb. Theory, Ser. B 51, No. 1, 46--72 (1991; Zbl 0763.05096) Full Text: DOI
Orlin, James B.; Vande Vate, John H. Solving the linear matroid parity problem as a sequence of matroid intersection problems. (English) Zbl 0813.90097 Math. Program., Ser. A 47, No. 1, 81-106 (1990). MSC: 90C27 05C70 05B35 90C60 PDF BibTeX XML Cite \textit{J. B. Orlin} and \textit{J. H. Vande Vate}, Math. Program. 47, No. 1 (A), 81--106 (1990; Zbl 0813.90097) Full Text: DOI
Zaslavsky, Thomas Biased graphs. I: Bias, balance, and gains. (English) Zbl 0714.05057 J. Comb. Theory, Ser. B 47, No. 1, 32-52 (1989). Reviewer: M.Demlova MSC: 05C99 05B35 PDF BibTeX XML Cite \textit{T. Zaslavsky}, J. Comb. Theory, Ser. B 47, No. 1, 32--52 (1989; Zbl 0714.05057) Full Text: DOI
Acketa, Dragan M. Graphic representations of graphic matroids on 9 elements. (English) Zbl 0714.05015 Graph theory, Proc. 8th Yugosl. Semin., Novi Sad/Yugosl. 1987, 1-30 (1989). Reviewer: J.M.S.Simões-Pereira MSC: 05B35 05C99 PDF BibTeX XML
Whittle, Geoff A generalization of the matroid lift construction. (English) Zbl 0684.05014 Trans. Am. Math. Soc. 316, No. 1, 141-159 (1989). Reviewer: A.Recski MSC: 05B35 PDF BibTeX XML Cite \textit{G. Whittle}, Trans. Am. Math. Soc. 316, No. 1, 141--159 (1989; Zbl 0684.05014) Full Text: DOI
Whiteley, Walter The union of matroids and the rigidity of frameworks. (English) Zbl 0671.05026 SIAM J. Discrete Math. 1, No. 2, 237-255 (1988). MSC: 05B35 05C05 51M30 70B99 74K99 52C17 PDF BibTeX XML Cite \textit{W. Whiteley}, SIAM J. Discrete Math. 1, No. 2, 237--255 (1988; Zbl 0671.05026) Full Text: DOI
Piotrowski, Wiktor Chordal characterization of graphic matroids. (English) Zbl 0656.05024 Discrete Math. 68, No. 2-3, 273-279 (1988). MSC: 05B35 05C38 PDF BibTeX XML Cite \textit{W. Piotrowski}, Discrete Math. 68, No. 2--3, 273--279 (1988; Zbl 0656.05024) Full Text: DOI
Duke, Roger On binary reducibility. (English) Zbl 0655.05019 Eur. J. Comb. 9, No. 2, 109-111 (1988). Reviewer: A.Recski MSC: 05B35 PDF BibTeX XML Cite \textit{R. Duke}, Eur. J. Comb. 9, No. 2, 109--111 (1988; Zbl 0655.05019) Full Text: DOI
Recski, András Elementary strong maps of graphic matroids. (English) Zbl 0651.05023 Graphs Comb. 3, 379-382 (1987). MSC: 05B35 05C99 PDF BibTeX XML Cite \textit{A. Recski}, Graphs Comb. 3, 379--382 (1987; Zbl 0651.05023) Full Text: DOI
Barahona, Francisco; Conforti, Michele A construction for binary matroids. (English) Zbl 0644.05017 Discrete Math. 66, 213-218 (1987). Reviewer: A.Recski MSC: 05B35 PDF BibTeX XML Cite \textit{F. Barahona} and \textit{M. Conforti}, Discrete Math. 66, 213--218 (1987; Zbl 0644.05017) Full Text: DOI
Seymour, P. D. Adjacency in binary matroids. (English) Zbl 0629.05025 Eur. J. Comb. 7, 171-176 (1986). Reviewer: J.Libicher MSC: 05B35 05C38 PDF BibTeX XML Cite \textit{P. D. Seymour}, Eur. J. Comb. 7, 171--176 (1986; Zbl 0629.05025) Full Text: DOI
Acketa, Dragan M. On the number of graphic representations of graphic matroids. (English) Zbl 0615.05023 Graph theory, Proc. 6th Yugosl. Semin., Dubrovnik/Yugosl. 1985, 1-26 (1986). MSC: 05B35 05C99 PDF BibTeX XML
Oxley, James Graphs and series-parallel networks. (English) Zbl 0587.05020 Theory of matroids, Encycl. Math. Appl. 26, 97-126 (1986). Reviewer: A. Recski MSC: 05B35 PDF BibTeX XML
Crapo, Henry Orthogonality. (English) Zbl 0587.05019 Theory of matroids, Encycl. Math. Appl. 26, 76-96 (1986). Reviewer: A. Recski MSC: 05B35 PDF BibTeX XML
Seymour, P. D. Applications of the regular matroid decomposition. (English) Zbl 0602.05019 Matroid theory, Proc. Colloq., Szeged/Hung. 1982, Colloq. Math. Soc. János Bolyai 40, 345-357 (1985). MSC: 05B35 PDF BibTeX XML
Wagner, Donald K. On theories of Whitney and Tutte. (English) Zbl 0584.05020 Discrete Math. 57, 147-154 (1985). Reviewer: W.Dörfler MSC: 05B35 05C40 PDF BibTeX XML Cite \textit{D. K. Wagner}, Discrete Math. 57, 147--154 (1985; Zbl 0584.05020) Full Text: DOI
Gabow, Harold N.; Stallmann, Matthias Efficient algorithms for graphic matroid intersection and parity. (English) Zbl 0567.05002 Automata, languages and programming, 12th Colloq., Nafplion/Greece 1985, Lect. Notes Comput. Sci. 194, 210-220 (1985). MSC: 05-04 05C35 05C05 05B35 05C38 68R10 PDF BibTeX XML
Kaschube, Paul A. Determining when a graphic matroid is transversal in linear time. (English) Zbl 0555.05023 Linear Multilinear Algebra 17, 41-83 (1985). Reviewer: S.Martello MSC: 05B35 PDF BibTeX XML Cite \textit{P. A. Kaschube}, Linear Multilinear Algebra 17, 41--83 (1985; Zbl 0555.05023) Full Text: DOI
Truemper, K. A decomposition theory for matroids. I: General results. (English) Zbl 0551.05033 J. Comb. Theory, Ser. B 39, 43-76 (1985). MSC: 05B35 PDF BibTeX XML Cite \textit{K. Truemper}, J. Comb. Theory, Ser. B 39, 43--76 (1985; Zbl 0551.05033) Full Text: DOI
Tong, Po; Lawler, E. L.; Vazirani, V. V. Solving the weighted parity problem for gammoids by reduction to graphic matching. (English) Zbl 0566.05017 Progress in combinatorial optimization, Conf. Waterloo/Ont. 1982, 363-374 (1984). MSC: 05B35 05C70 PDF BibTeX XML
Dick, Wayne E. Discrete characterizations of planarity. I: The classical viewpoint. (English) Zbl 0549.05023 Linear Multilinear Algebra 16, 39-65 (1984). Reviewer: A.T.White MSC: 05C10 05B35 05-02 PDF BibTeX XML Cite \textit{W. E. Dick}, Linear Multilinear Algebra 16, 39--65 (1984; Zbl 0549.05023) Full Text: DOI
Bixby, Robert E. Recent algorithms for two versions of graph realization and remarks on applications to linear programming. (English) Zbl 0542.90097 Progress in combinatorial optimization, Conf. Waterloo/Ont. 1982, 39-67 (1984). MSC: 90C35 05B35 90C05 PDF BibTeX XML
Marcu, Dănuţ Note on the length of elementary cycles of a graph. (English) Zbl 0534.05024 Q. J. Math., Oxf. II. Ser. 34, 475-476 (1983). Reviewer: J.G.Oxley MSC: 05B35 05C38 PDF BibTeX XML Cite \textit{D. Marcu}, Q. J. Math., Oxf. II. Ser. 34, 475--476 (1983; Zbl 0534.05024) Full Text: DOI
Borowiecki, Mieczyslaw A characterization of middle graphs and a matroid associated with middle graphs of hypergraphs. (English) Zbl 0524.05047 Fundam. Math. 117, 1-4 (1983). MSC: 05C75 05C65 05B35 PDF BibTeX XML Cite \textit{M. Borowiecki}, Fundam. Math. 117, 1--4 (1983; Zbl 0524.05047) Full Text: DOI EuDML
Truemper, K. On the efficiency of representability tests for matroids. (English) Zbl 0505.05021 Eur. J. Comb. 3, 275-291 (1982). MSC: 05B35 68Q25 PDF BibTeX XML Cite \textit{K. Truemper}, Eur. J. Comb. 3, 275--291 (1982; Zbl 0505.05021) Full Text: DOI
Arrowsmith, D. K.; Jaeger, François On the enumeration of chains in regular chain-groups. (English) Zbl 0486.05019 J. Comb. Theory, Ser. B 32, 75-89 (1982). MSC: 05B35 05C15 PDF BibTeX XML Cite \textit{D. K. Arrowsmith} and \textit{F. Jaeger}, J. Comb. Theory, Ser. B 32, 75--89 (1982; Zbl 0486.05019) Full Text: DOI
Hamacher, H. Decomposition of group flows in regular matroids. (English) Zbl 0484.05026 Computing 29, 113-133 (1982). MSC: 05B35 94C30 PDF BibTeX XML Cite \textit{H. Hamacher}, Computing 29, 113--133 (1982; Zbl 0484.05026) Full Text: DOI
Recski, Andras On the sum of matroids. III. (English) Zbl 0479.05022 Discrete Math. 36, 273-287 (1981). MSC: 05B35 PDF BibTeX XML Cite \textit{A. Recski}, Discrete Math. 36, 273--287 (1981; Zbl 0479.05022) Full Text: DOI
Recski, A. An algorithm to determine whether the sum of some graphic matroids is graphic. (English) Zbl 0473.05024 Algebraic methods in graph theory, Vol. II, Conf. Szeged 1978, Colloq. Math. Soc. Janos Bolyai 25, 647-656 (1981). MSC: 05B35 68W99 PDF BibTeX XML
Jaeger, François On graphic-minimal spaces. (English) Zbl 0448.05023 Ann. Discrete Math. 8, 123-126 (1980). MSC: 05B35 05C15 PDF BibTeX XML Full Text: DOI
Seymour, P. D. On Tutte’s characterization of graphic matroids. (English) Zbl 0445.05038 Ann. Discrete Math. 8, 83-90 (1980). MSC: 05B35 05C99 PDF BibTeX XML Full Text: DOI
Bixby, Robert E.; Cunningham, William H. Converting linear programs to network problems. (English) Zbl 0442.90095 Math. Oper. Res. 5, 321-357 (1980). MSC: 90C35 68Q25 90C05 05B35 PDF BibTeX XML Cite \textit{R. E. Bixby} and \textit{W. H. Cunningham}, Math. Oper. Res. 5, 321--357 (1980; Zbl 0442.90095) Full Text: DOI
Bryant, Victor; Perfect, Hazel Independence theory in combinatorics. An introductory account with applications to graphs and transversals. (English) Zbl 0435.05017 Chapman and Hall Mathematics Series. London-New York: Chapman and Hall. XII, 144 p. hbk: £10.00; pbk: £5.50 (1980). MSC: 05B35 05C20 05C99 PDF BibTeX XML