×

An enhanced-strain error estimator for Galerkin meshfree methods based on stabilized conforming nodal integration. (English) Zbl 1397.65294

Summary: Gradient averaging-type a posteriori error estimators applied to the finite element method enjoy great popularity in the engineering community. This is mainly because they are easy in their construction and computer implementation and usually provide constant-free and sharp error estimates on the expense of losing the bounding property. However, it proves difficult to transfer this error estimation procedure to Galerkin meshfree methods. One reason is that the meshfree gradient approximation is generally rather accurate per se and difficult to improve. Moreover, in many Galerkin meshfree methods the shape functions are no interpolants, as required in the original idea of constructing the recovered and thus smooth gradient field. In this paper, a novel error estimation procedure is presented that is based on the enhanced assumed strain (EAS) method and applied to the reproducing kernel particle method (RKPM) as a representative of Galerkin meshfree methods. The error estimator is naturally tailored to Galerkin meshfree methods if stabilized conforming nodal integration (SCNI) is employed, which provides two gradient fields: a globally smooth one (the compatible strain) and a cellwise constant one (the enhanced assumed strain). It is shown that the difference (the enhanced strain) can be used to derive an error estimator that follows the notion of gradient averaging-type error estimators and resolves its issues when applied to Galerkin meshfree methods. In addition, the enhanced-strain error estimator is even easier to implement and computationally less expensive than gradient averaging-type error estimators. Numerical examples of engineering interest illustrate the performance of the enhanced-strain error estimator presented in this paper.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

MFDMtool; Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154, (1997) · Zbl 0883.65088
[2] Krongauz, Y.; Belytschko, T., Consistent pseudo-derivatives in meshless methods, Comput. Methods Appl. Mech. Engrg., 146, 371-386, (1997) · Zbl 0894.73156
[3] Häussler-Combe, U.; Korn, C., An adaptive approach with the element-free-Galerkin method, Comput. Methods Appl. Mech. Engrg., 162, 203-222, (1998) · Zbl 0945.74077
[4] Le, C. V.; Askes, H.; Gilbert, M., Adaptive element-free Galerkin method applied to the limit analysis of plates, Comput. Methods Appl. Mech. Engrg., 199, 2487-2496, (2010) · Zbl 1231.74485
[5] Stein, E.; Rust, W., Mesh adaptations for linear 2D finite-element discretizations in structural mechanics, especially in thin shell analysis, J. Comput. Appl. Math., 36, 107-129, (1991) · Zbl 0727.73077
[6] Luo, Y.; Häussler-Combe, U., A gradient-based adaptation procedure and its implementation in the element-free Galerkin method, Int. J. Numer. Meth. Engng., 56, 1335-1354, (2003) · Zbl 1026.74081
[7] You, Y.; Chen, J. S.; Lu, H., Filters, reproducing kernel, and adaptive meshfree method, Comput. Mech., 31, 316-326, (2003) · Zbl 1038.74681
[8] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Engng, 24, 337-357, (1987) · Zbl 0602.73063
[9] Chung, H. J.; Belytschko, T., An error estimate in the EFG method, Comput. Mech., 21, 91-100, (1998) · Zbl 0910.73060
[10] Gavete, L.; Cuesta, J. L.; Ruiz, A., A procedure for approximation of the error in the EFG method, Int. J. Numer. Meth. Engng, 53, 677-690, (2002) · Zbl 1112.74564
[11] Gavete, L.; Gavete, M. L.; Alonso, B.; Martín, A. J., A posteriori error approximation in EFG method, Int. J. Numer. Meth. Engng, 58, 2239-2263, (2003) · Zbl 1047.74081
[12] Yvonnet, J.; Coffignal, G.; Ryckelynck, D.; Lorong, P.; Chinesta, F., A simple error indicator for meshfree methods based on natural neighbors, Comput. Struct., 84, 1301-1312, (2006)
[13] Lee, C. K.; Shuai, Y. Y., An automatic adaptive refinement procedure for the reproducing kernel particle method. part I: stress recovery and a posteriori error estimation, Comput. Mech., 40, 399-413, (2007) · Zbl 1178.74181
[14] Simo, J. C.; Rifai, M. S., A class of assumed strain methods and the method of incompatible modes, Int. J. Numer. Meth. Engng, 29, 1595-1638, (1990) · Zbl 0724.73222
[15] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. Methods Appl. Mech. Engrg., 131, 133-145, (1996) · Zbl 0881.65098
[16] Hegen, D., Element-free Galerkin methods in combination with finite element approaches, Comput. Methods Appl. Mech. Engrg., 135, 143-166, (1996) · Zbl 0893.73063
[17] Huerta, A.; Fernández-Méndez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Meth. Engng, 48, 1615-1636, (2000) · Zbl 0976.74067
[18] Chen, J. S.; Han, W.; You, Y.; Meng, X., A reproducing kernel method with nodal interpolation property, Int. J. Numer. Meth. Engng, 56, 935-960, (2003) · Zbl 1106.74424
[19] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput. Methods Appl. Mech. Engrg., 139, 195-227, (1996) · Zbl 0918.73330
[20] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192, (1973) · Zbl 0258.65108
[21] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Meth. Engng, 37, 229-256, (1994) · Zbl 0796.73077
[22] Babuška, I., The finite element method with penalty, Math. Comp., 27, 221-228, (1973) · Zbl 0299.65057
[23] Zhu, T.; Atluri, S. N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. Mech., 21, 211-222, (1998) · Zbl 0947.74080
[24] Nitsche, J. A., Über ein variationsprinzip zur Lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg., 36, 9-15, (1971) · Zbl 0229.65079
[25] Babuška, I.; Banerjee, U.; Osborn, J. E., Meshless and generalized finite element methods: A survey of some major results, Meshfree Methods for Partial Differential Equations, 1-20, (2003), Springer Berlin · Zbl 1012.65119
[26] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method, part V: boundary conditions, Geometric Analysis and Nonlinear Partial Differential Equations, 519-542, (2003), Springer Berlin · Zbl 1033.65102
[27] Milewski, S., Selected computational aspects of the meshless finite difference method, Numer Algor, 63, 107-126, (2013) · Zbl 1267.65156
[28] Stenberg, R., On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math., 63, 139-148, (1995) · Zbl 0856.65130
[29] Han, W.; Meng, X., Error analysis of reproducing kernel particle method, Comput. Methods Appl. Mech. Engrg., 190, 6157-6181, (2001) · Zbl 0992.65119
[30] Burman, E., A penalty free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions, SIAM J. Numer. Anal., 50, 1959-1981, (2012) · Zbl 1262.65165
[31] Boiveau, T.; Burman, E., A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity, IMA J. Numer. Anal., 36, 770-795, (2016) · Zbl 1433.74101
[32] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Meth. Engng, 50, 435-466, (2001) · Zbl 1011.74081
[33] Chen, J. S.; Hillman, M.; Rüter, M.; Hu, H. Y.; Chi, S. W., The role of quadrature in meshfree methods: variational consistency in Galerkin weak form and collocation in strong form, Iacm Expressions, 34, 11-16, (2013)
[34] Braess, D., Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg., 165, 155-174, (1998) · Zbl 0949.74065
[35] Chen, J. S.; Yoon, S.; Wu, C. T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Meth. Engng, 53, 2587-2615, (2002) · Zbl 1098.74732
[36] Chen, J. S.; Wang, D., A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates, Int. J. Numer. Meth. Engng, 68, 151-172, (2006) · Zbl 1130.74055
[37] Chen, J. S.; Hillman, M.; Rüter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Int. J. Numer. Meth. Engng, 95, 387-418, (2013) · Zbl 1352.65481
[38] Puso, M. A.; Zywicz, E.; Chen, J. S., A new stabilized nodal integration approach, Meshfree Methods for Partial Differential Equations III, 207-217, (2007), Springer Berlin · Zbl 1111.74048
[39] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 859-877, (2007) · Zbl 1169.74047
[40] Chen, J. S.; Hu, W.; Puso, M. A.; Wu, Y.; Zhang, X., Strain smoothing for stabilization and regularization of Galerkin meshfree methods, Meshfree Methods for Partial Differential Equations III, 57-75, (2007), Springer Berlin · Zbl 1114.65131
[41] Guan, P. C.; Chi, S. W.; Chen, J. S.; Slawson, T. R.; Roth, M. J., Semi-Lagrangian reproducing kernel particle method for fragment-impact problems, Int. J. Impact Eng., 38, 1033-1047, (2011)
[42] Gabaldón, F.; Goicolea, J. M., Linear and non-linear finite element error estimation based on assumed strain fields, Int. J. Numer. Meth. Engng, 55, 413-429, (2002) · Zbl 1076.74554
[43] Brauchli, H. J.; Oden, J. T., On the calculation of consistent stress distributions in finite element applications, Int. J. Numer. Meth. Engng, 3, 317-325, (1971) · Zbl 0251.73056
[44] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery (SPR) and adaptive finite element refinements, Comput. Methods Appl. Mech. Engrg., 101, 207-224, (1992) · Zbl 0779.73078
[45] Ródenas, J. J.; Tur, M.; Fuenmayor, F. J.; Vercher, A., Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique, Int. J. Numer. Meth. Engng, 70, 705-727, (2007) · Zbl 1194.74470
[46] Organ, D.; Fleming, M.; Terry, T.; Belytschko, T., Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput. Mech., 18, 225-235, (1996) · Zbl 0864.73076
[47] Gerasimov, T.; Stein, E.; Wriggers, P., Constant-free explicit error estimator with sharp upper error bound property for adaptive FE analysis in elasticity and fracture, Int. J. Numer. Meth. Engng, 101, 79-126, (2015) · Zbl 1352.74038
[48] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Meth. Engng, 79, 1309-1331, (2009) · Zbl 1176.74181
[49] Rüter, M.; Stein, E., Goal-oriented a posteriori error estimates in linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 195, 251-278, (2006) · Zbl 1193.74128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.