Braides, Andrea; Tribuzio, Antonio Perturbed minimizing movements of families of functionals. (English) Zbl 07314563 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 373-393 (2021). MSC: 47J30 35K90 49J45 47J35 35B27 PDF BibTeX XML Cite \textit{A. Braides} and \textit{A. Tribuzio}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 373--393 (2021; Zbl 07314563) Full Text: DOI
Friedrich, Manuel; Kružík, Martin; Valdman, Jan Numerical approximation of von Kármán viscoelastic plates. (English) Zbl 07314559 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 299-319 (2021). MSC: 74D05 74D10 35A15 35Q74 49J45 49S05 PDF BibTeX XML Cite \textit{M. Friedrich} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 299--319 (2021; Zbl 07314559) Full Text: DOI
Hong, Qi; Zhao, Jia; Wang, Qi Energy-production-rate preserving numerical approximations to network generating partial differential equations. (English) Zbl 07308034 Comput. Math. Appl. 84, 148-165 (2021). MSC: 65 76 PDF BibTeX XML Cite \textit{Q. Hong} et al., Comput. Math. Appl. 84, 148--165 (2021; Zbl 07308034) Full Text: DOI
Zergänge, Norman Convergence of Riemannian 4-manifolds with \(L^2\)-curvature bounds. (English) Zbl 07306552 Adv. Calc. Var. 14, No. 1, 83-105 (2021). MSC: 53C25 53E20 53C23 PDF BibTeX XML Cite \textit{N. Zergänge}, Adv. Calc. Var. 14, No. 1, 83--105 (2021; Zbl 07306552) Full Text: DOI
Nikolić, Vanja; Said-Houari, Belkacem On the Jordan-Moore-Gibson-Thompson wave equation in hereditary fluids with quadratic gradient nonlinearity. (English) Zbl 07299339 J. Math. Fluid Mech. 23, No. 1, Paper No. 3, 24 p. (2021). MSC: 35Q35 35L75 35G25 76Q05 76H05 PDF BibTeX XML Cite \textit{V. Nikolić} and \textit{B. Said-Houari}, J. Math. Fluid Mech. 23, No. 1, Paper No. 3, 24 p. (2021; Zbl 07299339) Full Text: DOI
Ferrari, Vincent; Santambrogio, Filippo Lipschitz estimates on the JKO scheme for the Fokker-Planck equation on bounded convex domains. (English) Zbl 07281326 Appl. Math. Lett. 112, Article ID 106806, 7 p. (2021). MSC: 35Q84 82C31 35K20 65M20 PDF BibTeX XML Cite \textit{V. Ferrari} and \textit{F. Santambrogio}, Appl. Math. Lett. 112, Article ID 106806, 7 p. (2021; Zbl 07281326) Full Text: DOI
Blaga, Adara-Monica Harmonic aspects in an \(\eta \)-Ricci soliton. (English) Zbl 07304390 Int. Electron. J. Geom. 13, No. 1, 41-49 (2020). MSC: 53E20 35C08 53C25 PDF BibTeX XML Cite \textit{A.-M. Blaga}, Int. Electron. J. Geom. 13, No. 1, 41--49 (2020; Zbl 07304390) Full Text: DOI
Mahajan, Amit; Tripathi, Vinit Kumar Effects of spatially varying gravity, temperature and concentration fields on the stability of a chemically reacting fluid layer. (English) Zbl 07300251 J. Eng. Math. 125, 23-45 (2020). MSC: 76E30 76E05 76V05 76M22 80A19 PDF BibTeX XML Cite \textit{A. Mahajan} and \textit{V. K. Tripathi}, J. Eng. Math. 125, 23--45 (2020; Zbl 07300251) Full Text: DOI
Serfaty, Sylvia Mean field limit for Coulomb-type flows. (English) Zbl 07292321 Duke Math. J. 169, No. 15, 2887-2935 (2020). MSC: 35Q82 82C22 82D10 81V70 60J65 PDF BibTeX XML Cite \textit{S. Serfaty}, Duke Math. J. 169, No. 15, 2887--2935 (2020; Zbl 07292321) Full Text: DOI Euclid
Weng, Liangjun Mean curvature flow in a Riemannian manifold endowed with a Killing vector field. (English) Zbl 07291160 Pac. J. Math. 308, No. 2, 435-472 (2020). MSC: 53E10 35J66 PDF BibTeX XML Cite \textit{L. Weng}, Pac. J. Math. 308, No. 2, 435--472 (2020; Zbl 07291160) Full Text: DOI
Mielke, Alexander; Stephan, Artur Coarse-graining via EDP-convergence for linear fast-slow reaction systems. (English) Zbl 07291090 Math. Models Methods Appl. Sci. 30, No. 9, 1765-1807 (2020). MSC: 60J20 47D07 47J30 92E20 PDF BibTeX XML Cite \textit{A. Mielke} and \textit{A. Stephan}, Math. Models Methods Appl. Sci. 30, No. 9, 1765--1807 (2020; Zbl 07291090) Full Text: DOI
He, Qiang; Li, Yongjian; Huang, Weifeng; Hu, Yang; Li, Decai; Wang, Yuming A unified lattice Boltzmann model for immiscible and miscible ternary fluids. (English) Zbl 07283137 Comput. Math. Appl. 80, No. 12, 2830-2859 (2020). MSC: 76M28 76T30 76T10 PDF BibTeX XML Cite \textit{Q. He} et al., Comput. Math. Appl. 80, No. 12, 2830--2859 (2020; Zbl 07283137) Full Text: DOI
Dolai, Bivash; Prajapati, R. P. Effects of dust-charge gradient and polarization forces on the waves and Jeans instability in strongly coupled dusty plasma. (English) Zbl 1448.76174 Phys. Lett., A 384, No. 25, Article ID 126462, 6 p. (2020). MSC: 76T15 82D10 76E20 76E25 PDF BibTeX XML Cite \textit{B. Dolai} and \textit{R. P. Prajapati}, Phys. Lett., A 384, No. 25, Article ID 126462, 6 p. (2020; Zbl 1448.76174) Full Text: DOI
Cancès, Clément; Gallouët, Thomas O.; Todeschi, Gabriele A variational finite volume scheme for Wasserstein gradient flows. (English) Zbl 1452.49019 Numer. Math. 146, No. 3, 437-480 (2020). Reviewer: Sorin-Mihai Grad (Wien) MSC: 49M29 35K65 65M08 65M12 PDF BibTeX XML Cite \textit{C. Cancès} et al., Numer. Math. 146, No. 3, 437--480 (2020; Zbl 1452.49019) Full Text: DOI
Badertdinova, E. R.; Khairullin, R. M.; Gadil’shina, V. R.; Khairullin, M. Kh. Thermohydrodynamic studies of vertical wells in non-linear filtration. (English) Zbl 07266150 Lobachevskii J. Math. 41, No. 7, 1162-1166 (2020). MSC: 76S05 76M20 80A19 PDF BibTeX XML Cite \textit{E. R. Badertdinova} et al., Lobachevskii J. Math. 41, No. 7, 1162--1166 (2020; Zbl 07266150) Full Text: DOI
Andreev, V. K.; Lemeshkova, E. N. Two-dimensional stationary thermocapillary flow of two liquids in a plane channel. (English. Russian original) Zbl 1450.76036 Comput. Math. Math. Phys. 60, No. 5, 844-852 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 5, 864-872 (2020). MSC: 76T06 76D45 76M99 76M21 80A19 PDF BibTeX XML Cite \textit{V. K. Andreev} and \textit{E. N. Lemeshkova}, Comput. Math. Math. Phys. 60, No. 5, 844--852 (2020; Zbl 1450.76036); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 5, 864--872 (2020) Full Text: DOI
Zaitzeff, Alexander; Esedoḡlu, Selim; Garikipati, Krishna Variational extrapolation of implicit schemes for general gradient flows. (English) Zbl 1453.65277 SIAM J. Numer. Anal. 58, No. 5, 2799-2817 (2020). Reviewer: Qifeng Zhang (Hangzhou) MSC: 65M12 65K10 65L06 65L20 PDF BibTeX XML Cite \textit{A. Zaitzeff} et al., SIAM J. Numer. Anal. 58, No. 5, 2799--2817 (2020; Zbl 1453.65277) Full Text: DOI
Bashiri, K. On the long-time behaviour of McKean-Vlasov paths. (English) Zbl 1448.35040 Electron. Commun. Probab. 25, Paper No. 52, 14 p. (2020). MSC: 35B40 35B30 35K55 35R60 49J40 60G10 PDF BibTeX XML Cite \textit{K. Bashiri}, Electron. Commun. Probab. 25, Paper No. 52, 14 p. (2020; Zbl 1448.35040) Full Text: DOI Euclid
Bouchet, Freddy Is the Boltzmann equation reversible? A large deviation perspective on the irreversibility paradox. (English) Zbl 1453.82069 J. Stat. Phys. 181, No. 2, 515-550 (2020). MSC: 82C40 35Q20 60F10 60F05 76N15 PDF BibTeX XML Cite \textit{F. Bouchet}, J. Stat. Phys. 181, No. 2, 515--550 (2020; Zbl 1453.82069) Full Text: DOI
Escher, Joachim; Knopf, Patrik; Lienstromberg, Christina; Matioc, Bogdan-Vasile Stratified periodic water waves with singular density gradients. (English) Zbl 1447.35256 Ann. Mat. Pura Appl. (4) 199, No. 5, 1923-1959 (2020). MSC: 35Q31 35B32 76B47 76B70 76B45 35C07 35R35 PDF BibTeX XML Cite \textit{J. Escher} et al., Ann. Mat. Pura Appl. (4) 199, No. 5, 1923--1959 (2020; Zbl 1447.35256) Full Text: DOI
Carrillo, J. A.; Delgadino, M. G.; Pavliotis, G. A. A \(\lambda\)-convexity based proof for the propagation of chaos for weakly interacting stochastic particles. (English) Zbl 07242608 J. Funct. Anal. 279, No. 10, Article ID 108734, 30 p. (2020). MSC: 60 35 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., J. Funct. Anal. 279, No. 10, Article ID 108734, 30 p. (2020; Zbl 07242608) Full Text: DOI
Leandro, Benedito; dos Santos, João Paulo Reduction of gradient Ricci soliton equations. (English) Zbl 1446.53029 Ann. Acad. Sci. Fenn., Math. 45, No. 2, 1003-1011 (2020). MSC: 53C21 53C50 53E20 PDF BibTeX XML Cite \textit{B. Leandro} and \textit{J. P. dos Santos}, Ann. Acad. Sci. Fenn., Math. 45, No. 2, 1003--1011 (2020; Zbl 1446.53029) Full Text: DOI
Chen, Min Gradient estimates via two-point functions for parabolic equations under Ricci flow. (English) Zbl 1446.53079 Bull. Aust. Math. Soc. 102, No. 2, 319-330 (2020). MSC: 53E20 35K55 35D40 PDF BibTeX XML Cite \textit{M. Chen}, Bull. Aust. Math. Soc. 102, No. 2, 319--330 (2020; Zbl 1446.53079) Full Text: DOI
Yamamoto, Hikaru Ricci-mean curvature flows in gradient shrinking Ricci solitons. (English) Zbl 1446.53080 Asian J. Math. 24, No. 1, 77-94 (2020). MSC: 53E20 53E10 53C42 PDF BibTeX XML Cite \textit{H. Yamamoto}, Asian J. Math. 24, No. 1, 77--94 (2020; Zbl 1446.53080) Full Text: DOI
Bonaldi, Francesco; Brenner, Konstantin; Droniou, Jérôme; Masson, Roland The gradient discretisation method for two-phase discrete fracture matrix models in deformable porous media. (English) Zbl 07239614 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 295-303 (2020). MSC: 65M60 65M12 76S05 74B10 74F10 PDF BibTeX XML Cite \textit{F. Bonaldi} et al., in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 295--303 (2020; Zbl 07239614) Full Text: DOI
Both, Jakub W.; Nordbotten, Jan M.; Radu, Florin A. Free energy diminishing discretization of Darcy-Forchheimer flow in poroelastic media. (English) Zbl 07239605 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 203-211 (2020). MSC: 65M08 65M06 65N30 65N12 76S05 74F10 74L15 PDF BibTeX XML Cite \textit{J. W. Both} et al., in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 203--211 (2020; Zbl 07239605) Full Text: DOI
Natale, Andrea; Todeschi, Gabriele TPFA finite volume approximation of Wasserstein gradient flows. (English) Zbl 07239604 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 193-201 (2020). MSC: 65M08 65M06 65M12 49M29 35K65 90C51 PDF BibTeX XML Cite \textit{A. Natale} and \textit{G. Todeschi}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 193--201 (2020; Zbl 07239604) Full Text: DOI
Linke, Alexander; Merdon, Christian Well-balanced discretisation for the compressible Stokes problem by gradient-robustness. (English) Zbl 07239596 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 113-121 (2020). MSC: 65N30 65N08 65N12 76D07 PDF BibTeX XML Cite \textit{A. Linke} and \textit{C. Merdon}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 113--121 (2020; Zbl 07239596) Full Text: DOI
Yang, Shuiping; Liu, Fawang; Feng, Libo; Turner, Ian W. Efficient numerical methods for the nonlinear two-sided space-fractional diffusion equation with variable coefficients. (English) Zbl 1446.65082 Appl. Numer. Math. 157, 55-68 (2020). MSC: 65M06 65M12 65H10 35R11 26A33 76S05 60K35 76M20 35R05 PDF BibTeX XML Cite \textit{S. Yang} et al., Appl. Numer. Math. 157, 55--68 (2020; Zbl 1446.65082) Full Text: DOI
Rupp, Fabian On the Łojasiewicz-Simon gradient inequality on submanifolds. (English) Zbl 1446.26015 J. Funct. Anal. 279, No. 8, Article ID 108708, 32 p. (2020). Reviewer: George Stoica (Saint John) MSC: 26D10 37C10 46T05 PDF BibTeX XML Cite \textit{F. Rupp}, J. Funct. Anal. 279, No. 8, Article ID 108708, 32 p. (2020; Zbl 1446.26015) Full Text: DOI
Chow, Bennett; Freedman, Michael; Shin, Henry; Zhang, Yongjia Curvature growth of some 4-dimensional gradient Ricci soliton singularity models. (English) Zbl 1445.53067 Adv. Math. 372, Article ID 107303, 16 p. (2020). MSC: 53E20 35C08 53C20 PDF BibTeX XML Cite \textit{B. Chow} et al., Adv. Math. 372, Article ID 107303, 16 p. (2020; Zbl 1445.53067) Full Text: DOI
Droniou, Jérôme; Le, Kim-Ngan The gradient discretization method for slow and fast diffusion porous media equations. (English) Zbl 1447.65048 SIAM J. Numer. Anal. 58, No. 3, 1965-1992 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M08 65M12 65M60 76S05 PDF BibTeX XML Cite \textit{J. Droniou} and \textit{K.-N. Le}, SIAM J. Numer. Anal. 58, No. 3, 1965--1992 (2020; Zbl 1447.65048) Full Text: DOI
Wang, Wen; Zhou, Hui; Xie, Rulong; Yin, Songting Some general gradient estimates for two nonlinear parabolic equations along Ricci flow. (English) Zbl 1451.58011 J. Math. Inequal. 14, No. 2, 337-376 (2020). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 58J35 35K05 53E20 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Math. Inequal. 14, No. 2, 337--376 (2020; Zbl 1451.58011) Full Text: DOI
Farhloul, Mohamed Mixed finite element methods for the Oseen problem. (English) Zbl 07221107 Numer. Algorithms 84, No. 4, 1431-1442 (2020). Reviewer: Aleksey Syromyasov (Saransk) MSC: 76M10 76D07 65N15 PDF BibTeX XML Cite \textit{M. Farhloul}, Numer. Algorithms 84, No. 4, 1431--1442 (2020; Zbl 07221107) Full Text: DOI
Bacuta, Constantin; Jacavage, Jacob Saddle point least squares for the reaction-diffusion problem. (English) Zbl 1443.76193 Results Appl. Math. 8, Article ID 100105, 14 p. (2020). MSC: 76M99 76R50 76V05 65N22 65N55 PDF BibTeX XML Cite \textit{C. Bacuta} and \textit{J. Jacavage}, Results Appl. Math. 8, Article ID 100105, 14 p. (2020; Zbl 1443.76193) Full Text: DOI
Gu, Yiqi; Shen, Jie Bound preserving and energy dissipative schemes for porous medium equation. (English) Zbl 1436.65101 J. Comput. Phys. 410, Article ID 109378, 20 p. (2020). MSC: 65M06 76S05 65M12 PDF BibTeX XML Cite \textit{Y. Gu} and \textit{J. Shen}, J. Comput. Phys. 410, Article ID 109378, 20 p. (2020; Zbl 1436.65101) Full Text: DOI
Brenner, K.; Masson, R.; Quenjel, E. H. Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media. (English) Zbl 1435.76042 J. Comput. Phys. 409, Article ID 109357, 21 p. (2020). MSC: 76M12 76S05 76T06 PDF BibTeX XML Cite \textit{K. Brenner} et al., J. Comput. Phys. 409, Article ID 109357, 21 p. (2020; Zbl 1435.76042) Full Text: DOI
Ngô, Quốc Anh; Zhang, Hong Prescribed \(Q\)-curvature flow on closed manifolds of even dimension. (English) Zbl 1447.53082 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 121, 59 p. (2020). Reviewer: Gabjin Yun (Yongin) MSC: 53E40 35J30 53C20 PDF BibTeX XML Cite \textit{Q. A. Ngô} and \textit{H. Zhang}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 121, 59 p. (2020; Zbl 1447.53082) Full Text: DOI
Grines, V. Z.; Gurevich, E. Ya.; Kurenkov, E. D. Topological classification of gradient-like flows with surface dynamics on 3-manifolds. (English. Russian original) Zbl 1446.37026 Math. Notes 107, No. 1, 173-176 (2020); translation from Mat. Zametki 107, No. 1, 145-148 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 37C15 37D15 37E30 37C29 37B35 37C10 PDF BibTeX XML Cite \textit{V. Z. Grines} et al., Math. Notes 107, No. 1, 173--176 (2020; Zbl 1446.37026); translation from Mat. Zametki 107, No. 1, 145--148 (2020) Full Text: DOI
Shen, Jie; Xu, Jie Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations. (English) Zbl 1440.65101 SIAM J. Numer. Anal. 58, No. 3, 1674-1695 (2020). MSC: 65M06 65M12 35K51 35K59 35Q92 92C17 92-08 PDF BibTeX XML Cite \textit{J. Shen} and \textit{J. Xu}, SIAM J. Numer. Anal. 58, No. 3, 1674--1695 (2020; Zbl 1440.65101) Full Text: DOI
Laborde, Maxime On cross-diffusion systems for two populations subject to a common congestion effect. (English) Zbl 07207254 Appl. Math. Optim. 81, No. 3, 989-1020 (2020). MSC: 35K40 49J40 49J45 PDF BibTeX XML Cite \textit{M. Laborde}, Appl. Math. Optim. 81, No. 3, 989--1020 (2020; Zbl 07207254) Full Text: DOI
Li, Xiaolong; Ni, Lei Kähler-Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature. (English. French summary) Zbl 1439.53084 J. Math. Pures Appl. (9) 138, 28-45 (2020). MSC: 53E30 53C55 53C20 32Q15 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Ni}, J. Math. Pures Appl. (9) 138, 28--45 (2020; Zbl 1439.53084) Full Text: DOI
Leandro, Benedito; Pina, Romildo; Bezerra, Tatiana Pires Fleury Invariant solutions for gradient Ricci almost solitons. (English) Zbl 1439.53038 São Paulo J. Math. Sci. 14, No. 1, 123-138 (2020). MSC: 53C21 53C50 53C25 53E30 PDF BibTeX XML Cite \textit{B. Leandro} et al., São Paulo J. Math. Sci. 14, No. 1, 123--138 (2020; Zbl 1439.53038) Full Text: DOI
Feng, Xiaobing; Li, Yukun; Zhang, Yi A fully discrete mixed finite element method for the stochastic Cahn-Hilliard equation with gradient-type multiplicative noise. (English) Zbl 1437.65186 J. Sci. Comput. 83, No. 1, Paper No. 23, 24 p. (2020). MSC: 65N30 65N12 65N15 76D27 35R60 35Q35 60H40 PDF BibTeX XML Cite \textit{X. Feng} et al., J. Sci. Comput. 83, No. 1, Paper No. 23, 24 p. (2020; Zbl 1437.65186) Full Text: DOI
Wilkin, Graeme The reverse Yang-Mills-Higgs flow in a neighbourhood of a critical point. (English) Zbl 1437.53016 J. Differ. Geom. 115, No. 1, 111-174 (2020). MSC: 53C07 53E30 58E15 PDF BibTeX XML Cite \textit{G. Wilkin}, J. Differ. Geom. 115, No. 1, 111--174 (2020; Zbl 1437.53016) Full Text: DOI Euclid
Müller, Marius On gradient flows with obstacles and Euler’s elastica. (English) Zbl 07187784 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111676, 48 p. (2020). MSC: 35K87 35R35 49J40 34G20 PDF BibTeX XML Cite \textit{M. Müller}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111676, 48 p. (2020; Zbl 07187784) Full Text: DOI
García Trillos, Nicolás Gromov-Hausdorff limit of Wasserstein spaces on point clouds. (English) Zbl 1436.49017 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 73, 43 p. (2020). Reviewer: Stepan Agop Tersian (Rousse) MSC: 49J45 49J55 49J15 35K05 49Q22 PDF BibTeX XML Cite \textit{N. García Trillos}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 73, 43 p. (2020; Zbl 1436.49017) Full Text: DOI
Tudoran, Răzvan M. A global geometric decomposition of vector fields and applications to topological conjugacy. (English) Zbl 07181475 Acta Appl. Math. 166, No. 1, 111-129 (2020). MSC: 37C10 34A26 37C15 PDF BibTeX XML Cite \textit{R. M. Tudoran}, Acta Appl. Math. 166, No. 1, 111--129 (2020; Zbl 07181475) Full Text: DOI
Ohta, Shin-Ichi Self-contracted curves in CAT(0)-spaces and their rectifiability. (English) Zbl 1434.52012 J. Geom. Anal. 30, No. 1, 936-967 (2020). MSC: 52A41 58E25 PDF BibTeX XML Cite \textit{S.-I. Ohta}, J. Geom. Anal. 30, No. 1, 936--967 (2020; Zbl 1434.52012) Full Text: DOI
Yu, Chengjie; Zhao, Feifei Sharp Li-Yau-type gradient estimates on hyperbolic spaces. (English) Zbl 1435.58003 J. Geom. Anal. 30, No. 1, 54-68 (2020). MSC: 58J35 53C20 35K05 53E20 PDF BibTeX XML Cite \textit{C. Yu} and \textit{F. Zhao}, J. Geom. Anal. 30, No. 1, 54--68 (2020; Zbl 1435.58003) Full Text: DOI
Trillos, Nicolas Garcia; Sanz-Alonso, Daniel The Bayesian update: variational formulations and gradient flows. (English) Zbl 1437.62113 Bayesian Anal. 15, No. 1, 29-56 (2020). MSC: 62F15 62R30 65C05 PDF BibTeX XML Cite \textit{N. G. Trillos} and \textit{D. Sanz-Alonso}, Bayesian Anal. 15, No. 1, 29--56 (2020; Zbl 1437.62113) Full Text: DOI Euclid
Wang, Xiuli; Zou, Yongkui; Zhai, Qilong An effective implementation for Stokes equation by the weak Galerkin finite element method. (English) Zbl 1434.65280 J. Comput. Appl. Math. 370, Article ID 112586, 8 p. (2020). MSC: 65N30 65N15 76D07 65N55 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Comput. Appl. Math. 370, Article ID 112586, 8 p. (2020; Zbl 1434.65280) Full Text: DOI
Zhao, Guangwen Gradient estimates and Harnack inequalities of a parabolic equation under geometric flow. (English) Zbl 1437.35127 J. Math. Anal. Appl. 483, No. 2, Article ID 123631, 24 p. (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B65 35K59 53E10 35R01 PDF BibTeX XML Cite \textit{G. Zhao}, J. Math. Anal. Appl. 483, No. 2, Article ID 123631, 24 p. (2020; Zbl 1437.35127) Full Text: DOI
Erbar, Matthias; Rumpf, Martin; Schmitzer, Bernhard; Simon, Stefan Computation of optimal transport on discrete metric measure spaces. (English) Zbl 07153076 Numer. Math. 144, No. 1, 157-200 (2020). MSC: 65K10 49M29 49Q20 60J27 PDF BibTeX XML Cite \textit{M. Erbar} et al., Numer. Math. 144, No. 1, 157--200 (2020; Zbl 07153076) Full Text: DOI arXiv
Carrillo, José Antonio; Di Francesco, Marco; Esposito, Antonio; Fagioli, Simone; Schmidtchen, Markus Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. (English) Zbl 1441.35103 Discrete Contin. Dyn. Syst. 40, No. 2, 1191-1231 (2020). MSC: 35F25 35A01 35A02 35R06 45K05 35A15 92D25 35L45 35L80 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Discrete Contin. Dyn. Syst. 40, No. 2, 1191--1231 (2020; Zbl 1441.35103) Full Text: DOI
Muratori, Matteo; Savaré, Giuseppe Gradient flows and evolution variational inequalities in metric spaces. I: structural properties. (English) Zbl 1448.49015 J. Funct. Anal. 278, No. 4, Article ID 108347, 67 p. (2020). Reviewer: Leszek Gasiński (Kraków) MSC: 49J40 47J35 PDF BibTeX XML Cite \textit{M. Muratori} and \textit{G. Savaré}, J. Funct. Anal. 278, No. 4, Article ID 108347, 67 p. (2020; Zbl 1448.49015) Full Text: DOI arXiv
Katz, Gabriel Morse theory, gradient flows, concavity and complexity on manifolds with boundary. (English) Zbl 1432.58002 Hackensack, NJ: World Scientific (ISBN 978-981-4368-75-9/hbk; 978-981-4719-68-1/ebook). xvi, 497 p. (2020). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58-02 58E05 58C25 57R70 53C23 58K45 PDF BibTeX XML Cite \textit{G. Katz}, Morse theory, gradient flows, concavity and complexity on manifolds with boundary. Hackensack, NJ: World Scientific (2020; Zbl 1432.58002) Full Text: DOI
Pulido, Manuel; van Leeuwen, Peter Jan Sequential Monte Carlo with kernel embedded mappings: the mapping particle filter. (English) Zbl 1452.65009 J. Comput. Phys. 396, 400-415 (2019). MSC: 65C05 62L12 65K10 PDF BibTeX XML Cite \textit{M. Pulido} and \textit{P. J. van Leeuwen}, J. Comput. Phys. 396, 400--415 (2019; Zbl 1452.65009) Full Text: DOI
Hou, Dianming; Azaiez, Mejdi; Xu, Chuanju A variant of scalar auxiliary variable approaches for gradient flows. (English) Zbl 1452.65197 J. Comput. Phys. 395, 307-332 (2019). MSC: 65M12 65M60 PDF BibTeX XML Cite \textit{D. Hou} et al., J. Comput. Phys. 395, 307--332 (2019; Zbl 1452.65197) Full Text: DOI
Nishikawa, Hiroaki Efficient gradient stencils for robust implicit finite-volume solver convergence on distorted grids. (English) Zbl 1452.65306 J. Comput. Phys. 386, 486-501 (2019). MSC: 65N08 65N50 76M12 35Q31 76D07 PDF BibTeX XML Cite \textit{H. Nishikawa}, J. Comput. Phys. 386, 486--501 (2019; Zbl 1452.65306) Full Text: DOI
Chen, Jiarui; Liu, Jiancheng Rigidity of complete non-compact gradient expanding Ricci solitons. (Chinese. English summary) Zbl 1449.53041 J. Jilin Univ., Sci. 57, No. 6, 1403-1406 (2019). MSC: 53C24 53E20 PDF BibTeX XML Cite \textit{J. Chen} and \textit{J. Liu}, J. Jilin Univ., Sci. 57, No. 6, 1403--1406 (2019; Zbl 1449.53041) Full Text: DOI
Sun, Li’na; Feng, Yue; Liu, Yuanyuan; Zhang, Ran The modified weak Galerkin finite element method for solving Brinkman equations. (English) Zbl 1449.65324 J. Math. Res. Appl. 39, No. 6, 657-676 (2019). MSC: 65N30 65N15 65N12 76S05 35Q35 76M10 PDF BibTeX XML Cite \textit{L. Sun} et al., J. Math. Res. Appl. 39, No. 6, 657--676 (2019; Zbl 1449.65324) Full Text: DOI
Shen, Jie Efficient and accurate structure preserving schemes for complex nonlinear systems. (English) Zbl 1446.65213 Kimmel, Ron (ed.) et al., Processing, analyzing and learning of images, shapes, and forms. Part 2. Amsterdam: Elsevier/North Holland. Handb. Numer. Anal. 20, 647-669 (2019). MSC: 65Z05 65M12 35K20 35K35 35K55 PDF BibTeX XML Cite \textit{J. Shen}, Handb. Numer. Anal. 20, 647--669 (2019; Zbl 1446.65213) Full Text: DOI
Dyachenko, Sergey A.; Hur, Vera Mikyoung Stokes waves in a constant vorticity flow. (English) Zbl 1444.76031 Henry, David (ed.) et al., Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 – December 7, 2017. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 71-86 (2019). MSC: 76B15 76M40 76B47 76M99 PDF BibTeX XML Cite \textit{S. A. Dyachenko} and \textit{V. M. Hur}, in: Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017. Cham: Birkhäuser. 71--86 (2019; Zbl 1444.76031) Full Text: DOI
Nguyen Viet Dang; Rivière, Gabriel Spectral analysis of Morse-Smale gradient flows. (English) Zbl 1448.37029 Ann. Sci. Éc. Norm. Supér. (4) 52, No. 6, 1403-1458 (2019). Reviewer: Dahisy Lima (Santo André) MSC: 37C30 37D15 37C05 37B30 37B35 57Q70 PDF BibTeX XML Cite \textit{Nguyen Viet Dang} and \textit{G. Rivière}, Ann. Sci. Éc. Norm. Supér. (4) 52, No. 6, 1403--1458 (2019; Zbl 1448.37029) Full Text: DOI
Bhoraniya, Ramesh; Narayanan, Vinod Global stability analysis of spatially developing boundary layer: effect of streamwise pressure gradients. (English. Russian original) Zbl 1434.76037 Fluid Dyn. 54, No. 6, 821-834 (2019); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2019, No. 6, 84-97 (2019). MSC: 76E05 76D10 76M22 PDF BibTeX XML Cite \textit{R. Bhoraniya} and \textit{V. Narayanan}, Fluid Dyn. 54, No. 6, 821--834 (2019; Zbl 1434.76037); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2019, No. 6, 84--97 (2019) Full Text: DOI
Tsypkin, G. G. Water-ice phase transition in unsaturated soil in the presence of capillary pressure. (English. Russian original) Zbl 1434.76142 Fluid Dyn. 54, No. 5, 681-690 (2019); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2019, No. 5, 93-101 (2019). MSC: 76T30 76S05 80A22 PDF BibTeX XML Cite \textit{G. G. Tsypkin}, Fluid Dyn. 54, No. 5, 681--690 (2019; Zbl 1434.76142); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2019, No. 5, 93--101 (2019) Full Text: DOI
Fang, Di; Jin, Shi; Markowich, Peter; Perthame, Benoît Implicit and semi-implicit numerical schemes for the gradient flow of the formation of biological transport networks. (English) Zbl 1437.65095 SMAI J. Comput. Math. 5, 229-249 (2019). MSC: 65M06 92C35 76Z05 76S05 92E20 35J60 35K57 35R02 35Q92 PDF BibTeX XML Cite \textit{D. Fang} et al., SMAI J. Comput. Math. 5, 229--249 (2019; Zbl 1437.65095) Full Text: DOI
Dondl, Patrick; Frenzel, Thomas; Mielke, Alexander A gradient system with a wiggly energy and relaxed EDP-convergence. (English) Zbl 1444.35101 ESAIM, Control Optim. Calc. Var. 25, Paper No. 68, 45 p. (2019). MSC: 35K55 35B27 35A15 49S05 49J40 49J45 PDF BibTeX XML Cite \textit{P. Dondl} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 68, 45 p. (2019; Zbl 1444.35101) Full Text: DOI
Carlier, Guillaume; Poon, Clarice On the total variation Wasserstein gradient flow and the TV-JKO scheme. (English) Zbl 07194581 ESAIM, Control Optim. Calc. Var. 25, Paper No. 42, 21 p. (2019). MSC: 35G31 49N15 PDF BibTeX XML Cite \textit{G. Carlier} and \textit{C. Poon}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 42, 21 p. (2019; Zbl 07194581) Full Text: DOI
Fleißner, Florentine \(\Gamma\)-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach. (English) Zbl 1442.49017 ESAIM, Control Optim. Calc. Var. 25, Paper No. 28, 29 p. (2019). MSC: 49J45 35K55 35K90 47J25 47J30 49M25 PDF BibTeX XML Cite \textit{F. Fleißner}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 28, 29 p. (2019; Zbl 1442.49017) Full Text: DOI
Schlichting, André Macroscopic limit of the Becker-Döring equation via gradient flows. (English) Zbl 1440.49013 ESAIM, Control Optim. Calc. Var. 25, Paper No. 22, 36 p. (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 49J40 34A34 35L65 49J45 49K15 60J27 82C26 PDF BibTeX XML Cite \textit{A. Schlichting}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 22, 36 p. (2019; Zbl 1440.49013) Full Text: DOI
Nguyen, A. K.; Blond, Eric; Sayet, T.; Batakis, A.; de Bilbao, E.; Duong, M. D. Self-organized gradient percolation method for numerical simulation of impregnation in porous media. (English) Zbl 1440.76119 Comput. Methods Appl. Mech. Eng. 344, 711-733 (2019). MSC: 76M28 76S05 74F10 PDF BibTeX XML Cite \textit{A. K. Nguyen} et al., Comput. Methods Appl. Mech. Eng. 344, 711--733 (2019; Zbl 1440.76119) Full Text: DOI
Zhu, Shengfeng; Gao, Zhiming Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation. (English) Zbl 1440.76093 Comput. Methods Appl. Mech. Eng. 343, 127-150 (2019). MSC: 76M10 65N30 65N12 76D07 PDF BibTeX XML Cite \textit{S. Zhu} and \textit{Z. Gao}, Comput. Methods Appl. Mech. Eng. 343, 127--150 (2019; Zbl 1440.76093) Full Text: DOI
Khaled-Abad, Leila Jafarian; Salehi, Rezvan Weak Galerkin finite element method for an inhomogeneous Brusselator model with cross-diffusion. (English) Zbl 1449.65249 J. Math. Model. 7, No. 3, 277-285 (2019). MSC: 65M60 35K57 65M15 35Q79 80A32 PDF BibTeX XML Cite \textit{L. J. Khaled-Abad} and \textit{R. Salehi}, J. Math. Model. 7, No. 3, 277--285 (2019; Zbl 1449.65249) Full Text: DOI
Zhang, Zhuhong On shrinking gradient 4-D Ricci solitons with sectional curvature bounded above. (Chinese. English summary) Zbl 1449.53051 J. South China Norm. Univ., Nat. Sci. Ed. 51, No. 2, 95-97 (2019). MSC: 53E20 53C25 PDF BibTeX XML Cite \textit{Z. Zhang}, J. South China Norm. Univ., Nat. Sci. Ed. 51, No. 2, 95--97 (2019; Zbl 1449.53051) Full Text: DOI
Tumakov, D. N.; Rung, E. V.; Danilova, A. V. Solving the problem of elastic waves diffraction by a fluid-saturated porous gradient layer using a second-order finite-difference scheme. (English) Zbl 1434.65140 Lobachevskii J. Math. 40, No. 10, 1739-1752 (2019). MSC: 65M06 76S05 65M12 65M15 42A38 34C25 65L10 74J05 PDF BibTeX XML Cite \textit{D. N. Tumakov} et al., Lobachevskii J. Math. 40, No. 10, 1739--1752 (2019; Zbl 1434.65140) Full Text: DOI
Mondal, Chandan Kumar; Shaikh, Absos Ali Some results in \(\eta \)-Ricci soliton and gradient \(\rho \)-Einstein soliton in a complete Riemannian manifold. (English) Zbl 1429.53043 Commun. Korean Math. Soc. 34, No. 4, 1279-1287 (2019). MSC: 53C15 53C21 53E20 58E20 58J05 PDF BibTeX XML Cite \textit{C. K. Mondal} and \textit{A. A. Shaikh}, Commun. Korean Math. Soc. 34, No. 4, 1279--1287 (2019; Zbl 1429.53043) Full Text: DOI
Müller, Ingo; Weiss, Wolf On the temperature gradient in the standard troposphere. (English) Zbl 1425.76217 Abali, Bilen Emek (ed.) et al., New achievements in continuum mechanics and thermodynamics. A tribute to Wolfgang H. Müller. Cham: Springer. Adv. Struct. Mater. 108, 343-352 (2019). MSC: 76N15 76T30 80A20 86A10 PDF BibTeX XML Cite \textit{I. Müller} and \textit{W. Weiss}, Adv. Struct. Mater. 108, 343--352 (2019; Zbl 1425.76217) Full Text: DOI
Jüngel, Ansgar; Stefanelli, Ulisse; Trussardi, Lara Two structure-preserving time discretizations for gradient flows. (English) Zbl 1427.65407 Appl. Math. Optim. 80, No. 3, 733-764 (2019). MSC: 65P10 35K55 35A35 PDF BibTeX XML Cite \textit{A. Jüngel} et al., Appl. Math. Optim. 80, No. 3, 733--764 (2019; Zbl 1427.65407) Full Text: DOI arXiv
Cancès, Clément; Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard Simulation of multiphase porous media flows with minimising movement and finite volume schemes. (English) Zbl 1425.76158 Eur. J. Appl. Math. 30, No. 6, 1123-1152 (2019). MSC: 76M12 35Q35 35K65 35A15 49M29 65M08 76S05 PDF BibTeX XML Cite \textit{C. Cancès} et al., Eur. J. Appl. Math. 30, No. 6, 1123--1152 (2019; Zbl 1425.76158) Full Text: DOI
Beaude, L.; Masson, R.; Lopez, S.; Samier, P. Combined face based and nodal based discretizations on hybrid meshes for non-isothermal two-phase Darcy flow problems. (English) Zbl 1435.65192 ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1125-1156 (2019). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65N30 65M08 65M12 76S05 PDF BibTeX XML Cite \textit{L. Beaude} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1125--1156 (2019; Zbl 1435.65192) Full Text: DOI
Shi, Wenhui; Vorotnikov, Dmitry Uniformly compressing mean curvature flow. (English) Zbl 1446.53078 J. Geom. Anal. 29, No. 4, 3055-3097 (2019). Reviewer: John Urbas (Canberra) MSC: 53E10 35K40 35K45 PDF BibTeX XML Cite \textit{W. Shi} and \textit{D. Vorotnikov}, J. Geom. Anal. 29, No. 4, 3055--3097 (2019; Zbl 1446.53078) Full Text: DOI arXiv
van Meurs, Patrick; Morandotti, Marco Discrete-to-continuum limits of particles with an annihilation rule. (English) Zbl 1428.82041 SIAM J. Appl. Math. 79, No. 5, 1940-1966 (2019). MSC: 82C22 82C21 35A15 74G10 PDF BibTeX XML Cite \textit{P. van Meurs} and \textit{M. Morandotti}, SIAM J. Appl. Math. 79, No. 5, 1940--1966 (2019; Zbl 1428.82041) Full Text: DOI arXiv
Turra, Mattia Existence and extinction in finite time for Stratonovich gradient noise porous media equations. (English) Zbl 1439.35593 Evol. Equ. Control Theory 8, No. 4, 867-882 (2019). Reviewer: Gelu Paşa (Bucureşti) MSC: 35R60 60H15 35K55 76S05 PDF BibTeX XML Cite \textit{M. Turra}, Evol. Equ. Control Theory 8, No. 4, 867--882 (2019; Zbl 1439.35593) Full Text: DOI
García Calcines, J. M.; Hernández Paricio, L. J.; Marañón Grandes, M.; Rivas Rodríguez, M. T. Regions of attraction, limits and end points of an exterior discrete semi-flow. (English) Zbl 1426.37014 Homology Homotopy Appl. 21, No. 2, 83-106 (2019). Reviewer: Thomas B. Ward (Leeds) MSC: 37B25 37B35 37C10 37C25 55P55 55P57 PDF BibTeX XML Cite \textit{J. M. García Calcines} et al., Homology Homotopy Appl. 21, No. 2, 83--106 (2019; Zbl 1426.37014) Full Text: DOI
Liu, Zhengguang; Li, Xiaoli Efficient modified techniques of invariant energy quadratization approach for gradient flows. (English) Zbl 07112003 Appl. Math. Lett. 98, 206-214 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{X. Li}, Appl. Math. Lett. 98, 206--214 (2019; Zbl 07112003) Full Text: DOI
Li, Jiajie; Zhu, Shengfeng Shape identification in Stokes flow with distributed shape gradients. (English) Zbl 1448.76070 Appl. Math. Lett. 95, 165-171 (2019). MSC: 76D07 76D55 76M20 PDF BibTeX XML Cite \textit{J. Li} and \textit{S. Zhu}, Appl. Math. Lett. 95, 165--171 (2019; Zbl 1448.76070) Full Text: DOI
Hauer, Daniel; Mazón, José M. Kurdyka-Łojasiewicz-Simon inequality for gradient flows in metric spaces. (English) Zbl 1425.49023 Trans. Am. Math. Soc. 372, No. 7, 4917-4976 (2019). MSC: 49Q20 49J52 39B62 35K90 58J35 PDF BibTeX XML Cite \textit{D. Hauer} and \textit{J. M. Mazón}, Trans. Am. Math. Soc. 372, No. 7, 4917--4976 (2019; Zbl 1425.49023) Full Text: DOI
Mao, Zirui; Liu, G. R.; Huang, Yu A local Lagrangian gradient smoothing method for fluids and fluid-like solids: a novel particle-like method. (English) Zbl 07110378 Eng. Anal. Bound. Elem. 107, 96-114 (2019). MSC: 76 74 PDF BibTeX XML Cite \textit{Z. Mao} et al., Eng. Anal. Bound. Elem. 107, 96--114 (2019; Zbl 07110378) Full Text: DOI
Ferreira, L. C. F.; Santos, M. C.; Valencia-Guevara, J. C. Minimizing movement for a fractional porous medium equation in a periodic setting. (English) Zbl 1433.35185 Bull. Sci. Math. 153, 86-117 (2019). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35K65 26A33 35K55 76S05 35K15 49Jxx 58Exx 28A33 PDF BibTeX XML Cite \textit{L. C. F. Ferreira} et al., Bull. Sci. Math. 153, 86--117 (2019; Zbl 1433.35185) Full Text: DOI
Li, Lei; Liu, Jian-Guo A discretization of Caputo derivatives with application to time fractional SDEs and gradient flows. (English) Zbl 07105241 SIAM J. Numer. Anal. 57, No. 5, 2095-2120 (2019). MSC: 65C30 65L20 PDF BibTeX XML Cite \textit{L. Li} and \textit{J.-G. Liu}, SIAM J. Numer. Anal. 57, No. 5, 2095--2120 (2019; Zbl 07105241) Full Text: DOI arXiv
Acerbi, E.; Fusco, N.; Julin, V.; Morini, M. Nonlinear stability results for the modified Mullins-Sekerka and the surface diffusion flow. (English) Zbl 07104702 J. Differ. Geom. 113, No. 1, 1-53 (2019). MSC: PDF BibTeX XML Cite \textit{E. Acerbi} et al., J. Differ. Geom. 113, No. 1, 1--53 (2019; Zbl 07104702) Full Text: DOI Euclid
Dong, Xiaoxu; Liu, Zhibin; Li, Shunchu Similar constructing method for solving nonlinear spherical seepage model with quadratic pressure gradient of three-region composite fractal reservoir. (English) Zbl 1438.76041 Comput. Appl. Math. 38, No. 2, Paper No. 83, 27 p. (2019). MSC: 76S05 35Q35 PDF BibTeX XML Cite \textit{X. Dong} et al., Comput. Appl. Math. 38, No. 2, Paper No. 83, 27 p. (2019; Zbl 1438.76041) Full Text: DOI
Shen, Jie; Xu, Jie; Yang, Jiang A new class of efficient and robust energy stable schemes for gradient flows. (English) Zbl 1422.65080 SIAM Rev. 61, No. 3, 474-506 (2019). MSC: 65J08 35K20 35K35 35K55 65Z05 35Q35 PDF BibTeX XML Cite \textit{J. Shen} et al., SIAM Rev. 61, No. 3, 474--506 (2019; Zbl 1422.65080) Full Text: DOI arXiv
Arnaudon, Marc; Del Moral, Pierre A variational approach to nonlinear and interacting diffusions. (English) Zbl 07098089 Stochastic Anal. Appl. 37, No. 5, 717-748 (2019). MSC: 65C35 82C80 58J65 47J20 PDF BibTeX XML Cite \textit{M. Arnaudon} and \textit{P. Del Moral}, Stochastic Anal. Appl. 37, No. 5, 717--748 (2019; Zbl 07098089) Full Text: DOI
Almi, S.; Belz, S.; Negri, M. Convergence of discrete and continuous unilateral flows for Ambrosio-Tortorelli energies and application to mechanics. (English) Zbl 1421.49033 ESAIM, Math. Model. Numer. Anal. 53, No. 2, 659-699 (2019). MSC: 49S05 74A45 PDF BibTeX XML Cite \textit{S. Almi} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 2, 659--699 (2019; Zbl 1421.49033) Full Text: DOI
Bürger, Raimund; Inzunza, Daniel; Mulet, Pep; Villada, Luis M. Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour. (English) Zbl 1450.65100 Appl. Numer. Math. 144, 234-252 (2019). Reviewer: Bülent Karasözen (Ankara) MSC: 65M20 65L06 65N06 35K05 35R09 45K05 76S05 PDF BibTeX XML Cite \textit{R. Bürger} et al., Appl. Numer. Math. 144, 234--252 (2019; Zbl 1450.65100) Full Text: DOI
Portelenelle, B.; Botella, O.; Cheny, Y. Accurate discretization of diffusion in the LS-STAG cut-cell method using diamond cell techniques. (English) Zbl 07075342 Comput. Fluids 189, 34-45 (2019). MSC: 76 PDF BibTeX XML Cite \textit{B. Portelenelle} et al., Comput. Fluids 189, 34--45 (2019; Zbl 07075342) Full Text: DOI
Bacho, Aras; Emmrich, Etienne; Mielke, Alexander An existence result and evolutionary \(\varGamma \)-convergence for perturbed gradient systems. (English) Zbl 1420.35029 J. Evol. Equ. 19, No. 2, 479-522 (2019). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35A15 35K85 49Q20 35K57 35D35 PDF BibTeX XML Cite \textit{A. Bacho} et al., J. Evol. Equ. 19, No. 2, 479--522 (2019; Zbl 1420.35029) Full Text: DOI