×

\([\operatorname{Ca}^{2+}]\) oscillations in a model of energy-dependent \(\text{Ca}^{2+}\) uptake by the endoplasmic reticulum. (English) Zbl 1445.92088

Summary: Active \(\operatorname{Ca}^{2+}\) transport in living cells necessitates controlled supply of metabolic energy. Direct coupling between sarco/endoplasmic reticulum (ER) \(\operatorname{Ca}^{2+}\) ATPases (SERCA) and intracellular energy-generation sites has been well established experimentally. On the basis of these experimental findings we propose a pump-driven model to investigate complex dynamic properties of a cell system. The model describes the pump process both by the \(\text{Ca}^{2+}\) ATPase itself and by a suitable description of the glycolysis. The associated set of differential equations shows a rich behavior, the solutions ranging from simple periodic oscillations to complex patterns such as bursting and spiking. Recent experimental results on calcium oscillations in Xenopus laevis oocytes and on dynamic patterns of intracellular \(\operatorname{Ca}^{2+}\) concentrations in electrically non-excitable cells are well described by corresponding theoretical results derived within the proposed model. The simulation results are further compared to spontaneous \([\text{Ca}^{2+}]\) oscillations in primitive endodermal cells.

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allen, D. G.; Eisner, D. A.; Orchard, C. H., Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle, J. Physiol., 352, 113-128 (1984)
[2] Berridge, M.; Bootman, M. J.; Lipp, P., Calcium—a life and death signal, Nature, 395, 645-648 (1998)
[3] Berridge, M. J.; Galione, A., Cytosolic calcium oscillators, FASEB J., 2, 3074-3082 (1988)
[4] Camacho, P.; Lechleiter, J. D., Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium ATPase, Science, 260, 226-228 (1993)
[5] Carafoli, E., Review article—calcium signaling: a tale for all seasons, Proc. Natl Acad. Sci., 99, 1115-1122 (2002)
[6] Cuthbertson, K. S.; Chay, R. R., Modelling receptor-controlled intracellular calcium oscillators, Cell Calcium, 12, 92-109 (1991)
[7] de Meis, L., (Bittar, E., The Sarcoplasmic Reticulum: Transport and Energy Transduction, vol. 2 (1981), Wiley: Wiley New York), 190-206
[8] de Meis, L., Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum \(\text{Ca}^{2 +}\) ATPase, J. Biol. Chem., 276, 25078-25087 (2001)
[9] de Meis, L.; Rubin-Altschul, B. M.; Machado, R. D., Comparative data of \(\text{Ca}^{2 +}\) transport in brain and skeletal muscle microsomes, J. Biol. Chem., 245, 1883-1889 (1970)
[10] De Young, G. W.; Keizer, J., A single pool inositol 1,4,5-triphosphate-receptor-based model for agonist stimulated oscillations in \(\text{Ca}^{2 +}\) concentration, Proc. Natl Acad. Sci. USA, 89, 9895-9899 (1992)
[11] Dupont, G.; Goldbeter, A., Properties of intracellular \(\text{Ca}^{2 +}\) waves generated by a model based on \(\text{Ca}^{2 +} \)-induces \(\text{Ca}^{2 +}\) release, Biophys. J., 67, 2191-2204 (1994)
[12] Dupont, G.; Berridge, M. J.; Goldbeter, A., Signal-induced \(\text{Ca}^{2 +}\) oscillations: properties of a model based on \(\text{Ca}^{2 +} \)-induced \(\text{Ca}^{2 +}\) release, Cell Calcium, 12, 73-85 (1991)
[13] Ehrlich, B. E., Functional properties of intracellular calcium-release channels, Curr. Opin. Neurobiol., 5, 304-309 (1995)
[14] Engelender, S.; de Meis, L., Pharmacological differentiation between intracellular calcium pump isoforms, Mol. Pharmacol., 50, 1243-1252 (1996)
[15] Falcke, M., Hudson, J.L., Camacho, P., Lechleiter, J.D., 1999. Impact of mitochondrial \(\text{Ca}^{2 +}\) cycling on pattern formation and stability. Biophys. J. 77, 37-44.
[16] Falcke, M.; Li, Y.; Lechleiter, J. D.; Camacho, P., Modeling the dependence of the period of intracellular \(\text{Ca}^{2 +}\) waves on serca expression, Biophys. J., 85, 1474-1481 (2003)
[17] Gadian, D. G.; Radda, G. K.; Brown, T. R.; Chance, E. M.; Dawson, M. J.; Wilkie, D. R., The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance, Biochem. J., 194, 215-228 (1981)
[18] Goldbeter, A., In Biochemical Oscillations and Cellular Rhythms (1996), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0837.92009
[19] Gray, P. T., Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells, J. Physiol., 406, 35-53 (1988)
[20] Igarashi, H.; Takahashi, E.; Hiroi, M.; Doi, K., Aging-related changes in calcium oscillations in fertilized mouse oocytes, Mol. Reprod. Dev., 48, 383-390 (1997)
[21] Inesi, G., Mechanism of \(\text{Ca}^{2 +}\) transport, Annu. Rev. Physiol., 47, 573-601 (1985)
[22] Inesi, G.; de Meis, L., Regulation of steady state filling in sarcoplasmic reticulum, J. Biol. Chem., 264, 5929-5936 (1989)
[23] Inesi, G.; Goodman, J. J.; Watanabe, S., Effect of diethyl ether on the adenosine triphosphatase activity and the calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle, J. Biol. Chem., 242, 4637-4643 (1996)
[24] Jacob, R., Minireview—calcium oscillations in electrically non-excitable cells, Biochim. Biophys. Acta, 1052, 427-438 (1990)
[25] Jacob, R.; Merritt, J. E.; Hallam, T. J.; Rink, T. J., Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells, Nature, 335, 40-45 (1988)
[26] Jafri, M. S.; Keizer, J., On the roles of \(\text{Ca}^{2 +}\) diffusion, \( \text{Ca}^{2 +}\) buffers and the endoplasmic reticulum in \(\operatorname{IP}_3\)-induced \(\text{Ca}^{2 +}\) waves, Biophys. J., 69, 2139-2153 (1995)
[27] Krause, U.; Wegener, G., Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise, Experientia, 52, 396-403 (1996)
[28] Lien, Y.-H. H.; Wang, X.; Gilles, R. J.; Martinez-Zaguilan, R. M., Modulation of intracellular \(\text{Ca}^{2 +}\) by glucose in mdck cells: role of endoplasmic reticulum \(\text{Ca}^{2 +}\) ATPase, Am. J. Physiol., 268, F671-G679 (1995)
[29] Marks, A. R., Intracellular calcium-release channels: regulators of cell life and death, Am. J. Physiol., 41, H597-H605 (1997)
[30] Meltzer, S.; Berman, M. C., Effects of pH, temperature, and calcium concentration on the stoichiometry of the calcium pump of sarcoplasmic reticulum, J. Biol. Chem., 259, 4244-4253 (1984)
[31] Meyer, T.; Stryer, L., Molecular model for receptor-stimulated calcium spiking, Proc. Natl Acad. Sci. USA, 85, 5051-5055 (1988)
[32] Michelangeli, F.; di Vergilio, F.; Villa, A.; Podini, P.; Meldolenesi, J.; Pozzan, T., Identification, kinetic properties, and intracellular localization of the \(\text{Ca}^{2 +}- \operatorname{Mg}^{2 +} \)-ATPase from the intracellular stores of chicken cerebellum, Biochem. J., 275, 555-556 (1991)
[33] Mikoshiba, K., The \(\operatorname{InsP}_3\) receptor and intracellular \(\text{Ca}^{2 +}\) signalling, Curr. Opin. Neurobiol., 7, 339-345 (1997)
[34] Montero-Lomeli, M.; de Meis, L., Glucose-6-phosphate and hexokinase can be used as an ATP regenerating system by the \(\text{Ca}^{2 +}\) ATPase of sarcoplasmic reticulum, J. Biol. Chem., 267, 1829-1833 (1992)
[35] Orrenius, S.; McConkey, D. J.; Bellomo, G.; Nicotera, P., Role of \(\text{Ca}^{2 +}\) in toxic cell killing, Trends Pharmacol. Sci., 10, 281-285 (1989)
[36] O’Sullivan, A. J.; Cheek, T. R.; Moreton, R. B.; Berridge, M. J.; Burgoyne, R. D., Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2, EMBO J., 8, 401-411 (1989)
[37] Paul, R. J.; Hardin, D. C.; Raeymaekers, L.; Wuytack, F.; Casteels, R., Preferential support of \(\text{Ca}^{2 +}\) uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade, FASEB J., 3, 2298-2301 (1989)
[38] Ramos, C. S.; de Meis, L., Glucose 6-phosphate and fructose 1,6-biphosphate can be used as ATP-regenerating systems by cerebellum \(\text{Ca}^{2 +}\) transport ATPase, J. Neurochem., 72, 81-85 (1999)
[39] Sauer, H.; Hofmann, C.; Wartenberg, M.; Wobus, A. M.; Hescheler, J., Spontaneous calcium oscillations in embryonic stem cell-derived primitive endodermal cells, Exp. Cell Res., 238, 13-22 (1998)
[40] Schrier, S. L., Organization of enzymes in human erythrocyte membranes, Am. J. Physiol., 210, 139-145 (1966)
[41] Schuster, S.; Marhl, M.; Hofer, T., Review article: modelling of simple and complex calcium oscillations, Eur. J. Biochem., 269, 1333-1355 (2002)
[42] Shigekawa, M.; Finegen, J. M.; Kats, A. M., Calcium transport ATPase of canine cardiac sarcoplasmic reticulum: a comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum, J. Biol. Chem., 251, 6894-6900 (1976)
[43] Weiss, J. N.; Korge, P., The cytoplasm: no longer a well-mixed bag, Circ. Res., 89, 108-110 (2001)
[44] Woods, N. M.; Cuthbertson, K. S.; Cobbold, P. H., Agonist-induced oscillations in cytoplasmic free calcium in single rat hepatocytes, Cell Calcium, 8, 79-100 (1987)
[45] Yu, X.; Inesi, G., Variable stoichiometric efficiency of \(\text{Ca}^{2 +}\) and \(\operatorname{Sr}^{2 +}\) transport by the sarcoplasmic reticulum ATPase, J. Biol. Chem., 270, 4361-4367 (1995)
[46] Yule, D. I.; Callacher, D. V., Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine, FEBS Lett., 239, 358-362 (1988)
[47] Zu, K. Y.; Zweier, J. L.; Becker, L. C., Functional coupling between glycolysis and sarcoplasmic reticulum \(\text{Ca}^{2 +}\) transport, Circ. Res., 77, 88-97 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.