×

Modelling of energy-driven switch for glucagon and insulin secretion. (English) Zbl 1437.92037

Summary: We present a mathematical model of the energy-driven metabolic switch for glucagon and insulin secretion from pancreatic alpha and beta cells, respectively. The energy status related to hormone secretion is studied for various glucose concentrations. Additionally, the physiological response is studied with regards to the presence of other metabolites, particularly the free-fatty acids. At low glucose, the ATP production in alpha cells is high due to free-fatty acids oxidation in mitochondria, which enables glucagon secretion. When the glucose concentration is elevated above the threshold value, the glucagon secretion is switched off due to the contribution of glycolytic ATP production, representing an “anaerobic switch”. On the other hand, during hypoglycemia, the ATP production in beta cells is low, reflecting a “waiting state” for glucose as the main metabolite. When glucose is elevated above the threshold value, the oxidative fate of glucose in mitochondria is the main source of energy required for effective insulin secretion, i.e. the “aerobic switch”. Our results show the importance of well-regulated and fine-tuned energetic processes in pancreatic alpha and beta cells required for efficient hormone secretion and hence effective blood glucose regulation. These energetic processes have to be appropriately switched on and off based on the sensing of different metabolites by alpha and beta cells. Our computational results indicate that disturbances in cell energetics (e.g. mitochondrial dysfunction), and dysfunctional metabolite sensing and distribution throughout the cell might be related to pathologies such as metabolic syndrome and diabetes.

MSC:

92C32 Pathology, pathophysiology
92C30 Physiology (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Affourtit, C.; Alberts, B.; Barlow, J.; Carré, J. E.; Wynne, A. G., Control of pancreatic β-cell bioenergetics, Biochem. Soc. Trans., 46, 555-564 (2018)
[2] Baeyens, L.; Lemper, M.; Staels, W.; De Groef, S.; De Leu, N.; Heremans, Y.; German, M. S.; Heimberg, H., (Re)generating human beta cells: status, pitfalls, and perspectives, Physiol. Rev., 98, 1143-1167 (2018)
[3] Barg, S.; Galvanovskis, J.; Gopel, S. O.; Rorsman, P.; Eliasson, L., Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells, Diabetes, 49, 1500-1510 (2000)
[4] Bertram, R.; Gram Pedersen, M.; Luciani, D. S.; Sherman, A., A simplified model for mitochondrial ATP production, J. Theor. Biol., 243, 575-586 (2006) · Zbl 1441.92014
[5] Bertram, R.; Sherman, A., A calcium-based phantom bursting model for pancreatic islets, Bull. Math. Biol., 66, 1313-1344 (2004) · Zbl 1334.92089
[6] Bertram, R.; Sherman, A.; Satin, L. S., Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion, Am. J. Physiol. Metab., 293, E890-E900 (2007)
[7] Bertuzzi, A.; Salinari, S.; Mingrone, G., Insulin granule trafficking in β-cells: mathematical model of glucose-induced insulin secretion, Am. J. Physiol. Metab., 293, E396-E409 (2007)
[8] Bouillaud, F., UCP2, not a physiologically relevant uncoupler but a glucose sparing switch impacting ROS production and glucose sensing, Biochim. Biophys. Acta - Bioenergy, 1787, 377-383 (2009)
[9] Bratic, I.; Trifunovic, A., Mitochondrial energy metabolism and ageing, Biochim. Biophys. Acta - Bioenergy, 1797, 961-967 (2010)
[10] Briant, L. J.B.; Dodd, M. S.; Chibalina, M. V.; Rorsman, N. J.G.; Johnson, P. R.V.; Carmeliet, P.; Rorsman, P.; Knudsen, J. G., CPT1a-dependent long-chain fatty acid oxidation contributes to maintaining glucagon secretion from pancreatic islets, Cell Rep., 23, 3300-3311 (2018)
[11] Briant, L. J.B.; Reinbothe, T. M.; Spiliotis, I.; Miranda, C.; Rodriguez, B.; Rorsman, P., δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin, J. Physiol., 596, 197-215 (2018)
[12] Briant, L. J.B.; Salehi, A.; Vergari, E.; Zhang, Q.; Rorsman, P., Glucagon secretion from pancreatic α-cells, Ups. J. Med. Sci., 121, 113-119 (2016)
[13] Briant, L. J.B.; Zhang, Q.; Vergari, E.; Kellard, J. A.; Rodriguez, B.; Ashcroft, F. M.; Rorsman, P., Functional identification of islet cell types by electrophysiological fingerprinting, J. R. Soc. Interface, 14, Article 20160999 pp. (2017)
[14] Buchwald, P.; Cechin, S. R., Glucose-stimulated insulin secretion in isolated pancreatic islets: Multiphysics FEM model calculations compared to results of perifusion experiments with human islets, J. Biomed. Sci. Eng., 06, 26-35 (2013)
[15] Buttgereit, F.; Brand, M. D., A hierarchy of ATP-consuming processes in mammalian cells, Biochem. J., 312, 163-167 (1995)
[16] Cantley, J., Ashcroft, F.M., 2015. Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biol. 13, 33. doi:10.1186/s12915-015-0140-6.
[17] Chandel, N. S., Evolution of mitochondria as signaling organelles, Cell Metab, 22, 204-206 (2015)
[18] Cheng-Xue, R.; Gomez-Ruiz, A.; Antoine, N.; Noel, L. A.; Chae, H.-Y.; Ravier, M. A.; Chimienti, F.; Schuit, F. C.; Gilon, P., Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of KATP channels from both α-cells and δ-cells, Diabetes, 62, 1612-1622 (2013)
[19] Cordero, M. D.; Benoit, M. D.C.; Editors, V., AMP-activated Protein Kinase, Experientia Supplementum (2016), Springer International Publishing: Springer International Publishing Cham
[20] Detimary, P.; Dejonghe, S.; Ling, Z.; Pipeleers, D.; Schuit, F.; Henquin, J.-C., The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in β cells but not in α cells and are also observed in human islets, J. Biol. Chem., 273, 33905-33908 (1998)
[21] Diao, J.; Allister, E. M.; Koshkin, V.; Lee, S. C.; Bhattacharjee, A.; Tang, C.; Giacca, A.; Chan, C. B.; Wheeler, M. B., UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival, Proc. Natl. Acad. Sci., 105, 12057-12062 (2008)
[22] Diderichsen, P. M.; Göpel, S. O., Modelling the electrical activity of pancreatic α-cells based on experimental data from intact mouse islets, J. Biol. Phys., 32, 209-229 (2006)
[23] Doliba, N. M.; Qin, W.; Najafi, H.; Liu, C.; Buettger, C. W.; Sotiris, J.; Collins, H. W.; Li, C.; Stanley, C. A.; Wilson, D. F.; Grimsby, J.; Sarabu, R.; Naji, A.; Matschinsky, F. M., Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics, Am. J. Physiol. Metab., 302, E87-E102 (2012)
[24] Dukes, I. D.; McIntyre, M. S.; Mertz, R. J.; Philipson, L. H.; Roe, M. W.; Spencer, B.; Worley, J. F., Dependence on NADH produced during glycolysis for beta-cell glucose signaling, J. Biol. Chem., 269, 10979-10982 (1994)
[25] Edwards, J. C.; Taylor, K. W., Fatty acids and the release of glucagon from isolated guinea-pig islets of langerhans incubated in vitro, Biochim. Biophys. Acta - Gen. Subj., 215, 310-315 (1970)
[26] Elliott, A. D.; Ustione, A.; Piston, D. W., Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP, Am. J. Physiol. Metab., 308, E130-E143 (2015)
[27] Eto, K.; Tsubamoto, Y.; Terauchi, Y.; Sugiyama, T.; Kishimoto, T.; Takahashi, N.; Yamauchi, N.; Kubota, N.; Murayama, S.; Aizawa, T.; Akanuma, Y.; Aizawa, S.; Kasai, H.; Yazaki, Y.; Kadowaki, T., Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion, Science, 283, 981-985 (1999)
[28] German, M. S., Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates, Proc. Natl. Acad. Sci., 90, 1781-1785 (1993)
[29] Gloyn, A. L.; Odili, S.; Zelent, D.; Buettger, C.; Castleden, H. A.J.; Steele, A. M.; Stride, A.; Shiota, C.; Magnuson, M. A.; Lorini, R.; D’Annunzio, G.; Stanley, C. A.; Kwagh, J.; van Schaftingen, E.; Veiga-da-Cunha, M.; Barbetti, F.; Dunten, P.; Han, Y.; Grimsby, J.; Taub, R.; Ellard, S.; Hattersley, A. T.; Matschinsky, F. M., Insights into the structure and regulation of glucokinase from a novel mutation (V62M), which causes maturity-onset diabetes of the young, J. Biol. Chem., 280, 14105-14113 (2005)
[30] Göke, B., Islet cell function: α and β cells – partners towards normoglycaemia, Int. J. Clin. Pract., 62, 2-7 (2008)
[31] Göpel, S.; Kanno, T.; Barg, S.; Galvanovskis, J.; Rorsman, P., Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets, J. Physiol., 521, 717-728 (1999)
[32] Göpel, S. O.; Kanno, T.; Barg, S.; Weng, X.-G.; Gromada, J.; Rorsman, P., Regulation of glucagon release in mouse α-cells by K ATP channels and inactivation of TTX-sensitive Na + channels, J. Physiol., 528, 509-520 (2000)
[33] Gorus, F. K.; Malaisset, W. J.; Pipeleerss, D. G., Differences in glucose handling by pancreatic A-and B-cells*, J. Biol. Chem., 259, 1196-1200 (1984)
[34] Gromada, J.; Franklin, I.; Wollheim, C. B., α-Cells of the endocrine pancreas: 35 years of research but the enigma remains, Endocr. Rev., 28, 84-116 (2007)
[35] Gromada, J.; Ma, X.; Hoy, M.; Bokvist, K.; Salehi, A.; Berggren, P.-O.; Rorsman, P., ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- Mouse α-cells, Diabetes, 53, S181-S189 (2004)
[36] Guo, Z., Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance, Proc. Natl. Acad. Sci., 112, E2854 (2015)
[37] Gylfe, E., Glucose control of glucagon secretion: there is more to it than KATP channels, Diabetes, 62, 1391-1393 (2013)
[38] Gylfe, E., Glucose control of glucagon secretion—‘There’s a brand-new gimmick every year, Ups. J. Med. Sci., 121, 120-132 (2016)
[39] Gylfe, E.; Gilon, P., Glucose regulation of glucagon secretion, Diabetes Res. Clin. Pract., 103, 1-10 (2014)
[40] Han, Y.-E.; Chun, J. N.; Kwon, M. J.; Ji, Y.-S.; Jeong, M.-H.; Kim, H.-H.; Park, S.-H.; Rah, J. C.; Kang, J.-S.; Lee, S.-H.; Ho, W.-K., Endocytosis of K ATP channels drives glucose-stimulated excitation of pancreatic β cells, Cell Rep., 22, 471-481 (2018)
[41] Haythorne, E.; Rohm, M.; van de Bunt, M.; Brereton, M. F.; Tarasov, A. I.; Blacker, T. S.; Sachse, G.; Santos, M.; Terron Exposito, R.; Davis, S.; Baba, O.; Fischer, R.; Duchen, M. R.; Rorsman, P.; MacRae, J. I.; Ashcroft, F. M., Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells, Nat. Commun., 10, 2474 (2019)
[42] Heimberg, H.; De Vos, A.; Moens, K.; Quartier, E.; Bouwens, L.; Pipeleers, D.; Van Schaftingen, E.; Madsen, O.; Schuit, F., The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells, Proc. Natl. Acad. Sci., 93, 7036-7041 (1996)
[43] Heimberg, H.; De Vos, A.; Pipeleers, D.; Thorens, B.; Schuit, F., Differences in glucose transporter gene expression between rat pancreatic α- and β-Cells Are correlated to differences in glucose transport but not in glucose utilization, J. Biol. Chem., 270, 8971-8975 (1995)
[44] Henquin, J. C., Triggering and amplifying pathways of regulation of insulin secretion by glucose, Diabetes, 49, 1751-1760 (2000)
[45] Henquin, J. C.; Rahier, J., Pancreatic alpha cell mass in European subjects with type 2 diabetes, Diabetologia, 54, 1720-1725 (2011)
[46] Hernández-Camacho, J. D.; Bernier, M.; López-Lluch, G.; Navas, P., Coenzyme Q10 supplementation in aging and disease, Front. Physiol., 9, 44 (2018)
[47] Hong, J.; Jeppesen, P. B.; Nordentoft, I.; Hermansen, K., Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation, Diabetes. Metab. Res. Rev., 23, 202-210 (2007)
[48] Hue, L.; Taegtmeyer, H., The Randle cycle revisited: a new head for an old hat, Am. J. Physiol. Metab., 297, E578-E591 (2009)
[49] Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara, T.; Hinuma, S.; Fujisawa, Y.; Fujino, M., Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40, Nature, 422, 173-176 (2003)
[50] Jaswal, J. S.; Ussher, J. R.; Lopaschuk, G. D., Myocardial fatty acid utilization as a determinant of cardiac efficiency and function, Clin. Lipidol., 4, 379-389 (2009)
[51] Kennedy, E. D.; Maechler, P.; Wollheim, C. B., Effects of depletion of mitochondrial DNA in metabolism secretion coupling in INS-1 cells, Diabetes, 47, 374-380 (1998)
[52] Kennedy, R. T.; Kauri, L. M.; Dahlgren, G. M.; Jung, S.-K., Metabolic oscillations in beta-cells, Diabetes, 51, S152-S161 (2002)
[53] Knudsen, J. G.; Hamilton, A.; Ramracheya, R.; Tarasov, A. I.; Brereton, M.; Haythorne, E.; Chibalina, M. V.; Spégel, P.; Mulder, H.; Zhang, Q.; Ashcroft, F. M.; Adam, J.; Rorsman, P., Dysregulation of glucagon secretion by hyperglycemia-induced sodium-dependent reduction of ATP production, Cell Metab, 29, 430-442 (2019), e4
[54] Kristinsson, H.; Sargsyan, E.; Manell, H.; Smith, D. M.; Göpel, S. O.; Bergsten, P., Basal hypersecretion of glucagon and insulin from palmitate-exposed human islets depends on FFAR1 but not decreased somatostatin secretion, Sci. Rep., 7, 4657 (2017)
[55] Lai, B.-K.; Chae, H.; Gómez-Ruiz, A.; Cheng, P.; Gallo, P.; Antoine, N.; Beauloye, C.; Jonas, J.-C.; Seghers, V.; Seino, S.; Gilon, P., Somatostatin is only partly required for the glucagonostatic effect of glucose but is necessary for the glucagonostatic effect of K ATP channel blockers, Diabetes, 67, 2239-2253 (2018)
[56] Lane, N., Hydrogen bombshell: rewriting life’s history, New Sci., 36-39 (2010)
[57] Le Marchand, S. J.; Piston, D. W., Glucose suppression of glucagon secretion, J. Biol. Chem., 285, 14389-14398 (2010)
[58] Li, J.; Yu, Q.; Ahooghalandari, P.; Gribble, F. M.; Reimann, F.; Tengholm, A.; Gylfe, E., Submembrane ATP and Ca2+ kinetics in α-cells: unexpected signaling for glucagon secretion, FASEB J., 29, 3379-3388 (2015)
[59] Liang, Y.; Bai, G.; Doliba, N.; Buettger, C.; Wang, L.; Berner, D. K.; Matschinsky, F. M., Glucose metabolism and insulin release in mouse beta HC9 cells, as model for wild-type pancreatic beta-cells, Am. J. Physiol. Metab., 270, E846-E857 (1996)
[60] Liu, Y.-J.; Vieira, E.; Gylfe, E., A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic α-cell, Cell Calcium, 35, 357-365 (2004)
[61] Luchini, L.; Wicki, G.; Romano, L. A., The Ultrastructure of secretory cells of the islets of langerhans in south american catfish Rhamdia quelen, J. Histol., 2015, 1-6 (2015)
[62] MacDonald, M. J., Elusive proximal signals of β-cells for insulin secretion, Diabetes, 39, 1461-1466 (1990)
[63] MacDonald, M. J., Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion, J. Biol. Chem., 270, 20051-20058 (1995)
[64] MacDonald, M. J.; Marshall, L. K., Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle, Arch. Biochem. Biophys., 384, 143-153 (2000)
[65] MacDonald, M. J.; Tang, J.; Polonsky, K. S., Low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of Zucker diabetic fatty rats, Diabetes, 45, 1626-1630 (1996)
[66] MacDonald, P. E.; Marinis, Y. Z.D.; Ramracheya, R.; Salehi, A.; Ma, X.; Johnson, P. R.V.; Cox, R.; Eliasson, L.; Rorsman, P., A KATP channel-dependent pathway within α cells regulates glucagon release from both rodent and human islets of Langerhans, PLoS Biol., 5, e143 (2007)
[67] Machino, M.; Onoe, T.; Sakuma, H., Electron microscopic observations on the islet alpha cells of the domestic fowl pancreas, J. Electron Microsc., 15, 249-256 (1966)
[68] Maechler, P.; Wollheim, C. B., Mitochondrial function in normal and diabetic β-cells, Nature, 414, 807-812 (2001)
[69] Magnus, G.; Keizer, J., Minimal model of beta-cell mitochondrial Ca2+ handling, Am. J. Physiol. Physiol., 273, C717-C733 (1997)
[70] Magnus, G.; Keizer, J., Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables, Am. J. Physiol. Physiol., 274, C1158-C1173 (1998)
[71] Magnus, G.; Keizer, J., Model of β-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables, Am. J. Physiol. Physiol., 274, C1174-C1184 (1998)
[72] Mikami, S.; Mutoh, K., Light- and electron-microscopic studies of the pancreatic islet cells in the chicken under normal and experimental conditions, Zeitschrift Zellforsch Mikroskopische Anat., 116, 205-227 (1971)
[73] Millet, L.; Vidal, H.; Andreelli, F.; Larrouy, D.; Riou, J. P.; Ricquier, D.; Laville, M.; Langin, D., Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans, J. Clin. Investig., 100, 2665-2670 (1997)
[74] Montefusco, F.; Pedersen, M. G., Mathematical modelling of local calcium and regulated exocytosis during inhibition and stimulation of glucagon secretion from pancreatic alpha‐cells, J. Physiol., 593, 4519-4530 (2015)
[75] Munger, B. L., A light and electron microscopic study of cellular differentiation in the pancreatic islets of the mouse, Am. J. Anat., 103, 275-311 (1958)
[76] Nicholls, D. G., The pancreatic β-Cell: a bioenergetic perspective, Physiol. Rev., 96, 1385-1447 (2016)
[77] Olofsson, C. S.; Salehi, A.; Gopel, S. O.; Holm, C.; Rorsman, P., Palmitate stimulation of glucagon secretion in mouse pancreatic -cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium, Diabetes, 53, 2836-2843 (2004)
[78] Olsen, H. L.; Theander, S.; Bokvist, K.; Buschard, K.; Wollheim, C. B.; Gromada, J., Glucose stimulates glucagon release in single rat α-cells by mechanisms that mirror the stimulus-secretion coupling in β-cells, Endocrinology, 146, 4861-4870 (2005)
[79] Östenson, C.-G.; Ågren, A.; Andersson, A., Effects of metabolic inhibitors on the regulation of pancreatic glucagon release, Biochim. Biophys. Acta - Gen. Subj., 628, 152-160 (1980)
[80] Palumbo, P.; Ditlevsen, S.; Bertuzzi, A.; De Gaetano, A., Mathematical modeling of the glucose-insulin system: a review, Math. Biosci., 244, 69-81 (2013) · Zbl 1280.92023
[81] Pedersen, M. G., Contributions of mathematical modeling of beta cells to the understanding of beta-cell oscillations and insulin secretion, J. Diabetes Sci. Technol., 3, 12-20 (2009)
[82] Pedersen, M. G.; Bertram, R.; Sherman, A., Intra- and inter-islet synchronization of metabolically driven insulin secretion, Biophys. J., 89, 107-119 (2005)
[83] Pedersen, M. G.; Cortese, G.; Eliasson, L., Mathematical modeling and statistical analysis of calcium-regulated insulin granule exocytosis in β-cells from mice and humans, Prog. Biophys. Mol. Biol., 107, 257-264 (2011)
[84] Pedersen, M. G.; Tagliavini, A.; Cortese, G.; Riz, M.; Montefusco, F., Recent advances in mathematical modeling and statistical analysis of exocytosis in endocrine cells, Math. Biosci., 283, 60-70 (2017) · Zbl 1367.92049
[85] Puri, S.; Folias, A. E.; Hebrok, M., Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease, Cell Stem Cell, 16, 18-31 (2015)
[86] Quesada, I.; Todorova, M. G.; Soria, B., Different metabolic responses in α-, β-, and δ-cells of the islet of langerhans monitored by redox confocal microscopy, Biophys. J., 90, 2641-2650 (2006)
[87] Rahier, J.; Guiot, Y.; Goebbels, R. M.; Sempoux, C.; Henquin, J. C., Pancreatic β-cell mass in European subjects with type 2 diabetes, Diabetes Obes. Metab., 10, 32-42 (2008)
[88] Ramracheya, R.; Ward, C.; Shigeto, M.; Walker, J. N.; Amisten, S.; Zhang, Q.; Johnson, P. R.; Rorsman, P.; Braun, M., Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets, Diabetes, 59, 2198-2208 (2010)
[89] Rorsman, P.; Ashcroft, F. M., Pancreatic β-cell electrical activity and insulin secretion: of mice and men, Physiol. Rev., 98, 117-214 (2018)
[90] Rorsman, P.; Ramracheya, R.; Rorsman, N. J.G. G.; Zhang, Q., ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion, Diabetologia, 57, 1749-1761 (2014)
[91] Rorsman, P.; Salehi, S. A.; Abdulkader, F.; Braun, M.; MacDonald, P. E., KATP-channels and glucose-regulated glucagon secretion, Trends Endocrinol. Metab., 19, 277-284 (2008)
[92] Schrauwen, P.; Hesselink, M. K.C.; Blaak, E. E.; Borghouts, L. B.; Schaart, G.; Saris, W. H.M.; Keizer, H. A., Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes, Diabetes, 50, 2870-2873 (2001)
[93] Schuit, F.; De Vos, A.; Farfari, S.; Moens, K.; Pipeleers, D.; Brun, T.; Prentki, M., Metabolic fate of glucose in purified islet cells, J. Biol. Chem., 272, 18572-18579 (1997)
[94] Sekine, N.; Cirulli, V.; Regazzi, R.; Brown, L. J.; Gine, E.; Tamarit-Rodriguez, J.; Girotti, M.; Marie, S.; MacDonald, M. J.; Wollheim, C. B., Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing, J. Biol. Chem., 269, 4895-4902 (1994)
[95] Talchai, C.; Xuan, S.; Lin, H. V.; Sussel, L.; Accili, D., Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure, Cell, 150, 1223-1234 (2012)
[96] Thorrez, L.; Laudadio, I.; Van Deun, K.; Quintens, R.; Hendrickx, N.; Granvik, M.; Lemaire, K.; Schraenen, A.; Van Lommel, L.; Lehnert, S.; Aguayo-Mazzucato, C.; Cheng-Xue, R.; Gilon, P.; Van Mechelen, I.; Bonner-Weir, S.; Lemaigre, F.; Schuit, F., Tissue-specific disallowance of housekeeping genes: theother face of cell differentiation, Genome Res., 21, 95-105 (2011)
[97] Unger, R. H.; Cherrington, A. D., Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover, J. Clin. Investig., 122, 4-12 (2012)
[98] Vazquez, A., Overflow Metabolism (2018), Elsevier
[99] Vieira, E.; Salehi, A.; Gylfe, E., Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells, Diabetologia, 50, 370-379 (2007)
[100] Walker, J. N.; Ramracheya, R.; Zhang, Q.; Johnson, P. R.V.; Braun, M.; Rorsman, P., Regulation of glucagon secretion by glucose: paracrine, intrinsic or both?, Diabetes Obes. Metab., 13, 95-105 (2011)
[101] Watts, M.; Ha, J.; Kimchi, O.; Sherman, A., Paracrine regulation of glucagon secretion: the β-α-δ model, Am. J. Physiol. - Endocrinol. Metab. (2016)
[102] Watts, M.; Sherman, A., Modeling the pancreatic α-cell: Dual mechanisms of glucose suppression of glucagon secretion, Biophys. J., 106, 741-751 (2014)
[103] Weinberg, S. E.; Chandel, N. S., Targeting mitochondria metabolism for cancer therapy, Nat. Chem. Biol., 11, 9-15 (2015)
[104] Weir, G. C.; Bonner-Weir, S., Islet β cell mass in diabetes and how it relates to function, birth, and death, Ann. N. Y. Acad. Sci., 1281, 92-105 (2013)
[105] Weyer, C.; Bogardus, C.; Mott, D. M.; Pratley, R. E., The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus, J. Clin. Investig., 104, 787-794 (1999)
[106] Wilson, D. F.; Cember, A. T.J.; Matschinsky, F. M., The thermodynamic basis of glucose‐stimulated insulin release: a model of the core mechanism, Physiol. Rep., 5, e13327 (2017)
[107] Yu, Q.; Shuai, H.; Ahooghalandari, P.; Gylfe, E.; Tengholm, A., Glucose controls glucagon secretion by directly modulating cAMP in alpha cells, Diabetologia, 62, 1212-1224 (2019)
[108] Zhang, Q.; Galvanovskis, J.; Abdulkader, F.; Partridge, C. J.; Gopel, S. O.; Eliasson, L.; Rorsman, P., Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans, Philos. Trans. R. Soc. A, 366, 3503-3523 (2008)
[109] Zhang, Q.; Ramracheya, R.; Lahmann, C.; Tarasov, A.; Bengtsson, M.; Braha, O.; Braun, M.; Brereton, M.; Collins, S.; Galvanovskis, J.; Gonzalez, A.; Groschner, L. N.; Rorsman, N. J.G.; Salehi, A.; Travers, M. E.; Walker, J. N.; Gloyn, A. L.; Gribble, F.; Johnson, P. R.V.; Reimann, F.; Ashcroft, F. M.; Rorsman, P., Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes, Cell Metab., 18, 871-882 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.