Jin, Guanghui; Moon, Bora Local and global solutions to the \(O(3)\)-sigma model with the Maxwell and the Chern-Simons gauges in \(\mathbb{R}^{1 + 1} \). (English) Zbl 07315381 J. Math. Anal. Appl. 495, No. 1, Article ID 124715, 17 p. (2021). MSC: 35 83 PDF BibTeX XML Cite \textit{G. Jin} and \textit{B. Moon}, J. Math. Anal. Appl. 495, No. 1, Article ID 124715, 17 p. (2021; Zbl 07315381) Full Text: DOI
Pecher, Hartmut Local well-posedness for the Klein-Gordon-Zakharov system in 3D. (English) Zbl 07314929 Discrete Contin. Dyn. Syst. 41, No. 4, 1707-1736 (2021). MSC: 35Q55 35A01 PDF BibTeX XML Cite \textit{H. Pecher}, Discrete Contin. Dyn. Syst. 41, No. 4, 1707--1736 (2021; Zbl 07314929) Full Text: DOI
Zhai, Xiaoping; Li, Yongsheng Global large solutions and optimal time-decay estimates to the Korteweg system. (English) Zbl 07314914 Discrete Contin. Dyn. Syst. 41, No. 3, 1387-1413 (2021). MSC: 35Q35 76N10 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Li}, Discrete Contin. Dyn. Syst. 41, No. 3, 1387--1413 (2021; Zbl 07314914) Full Text: DOI
Abbatiello, Anna; Feireisl, Eduard; Novotný, Antoní Generalized solutions to models of compressible viscous fluids. (English) Zbl 07314155 Discrete Contin. Dyn. Syst. 41, No. 1, 1-28 (2021). MSC: 35A01 35D30 76N10 PDF BibTeX XML Cite \textit{A. Abbatiello} et al., Discrete Contin. Dyn. Syst. 41, No. 1, 1--28 (2021; Zbl 07314155) Full Text: DOI
Dreyfuss, Pierre; Houamed, Haroune Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation. (English) Zbl 07312802 J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{P. Dreyfuss} and \textit{H. Houamed}, J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021; Zbl 07312802) Full Text: DOI
Chen, Yuhui; Pan, Ronghua; Tong, Leilei The sharp time decay rate of the isentropic Navier-Stokes system in \(\mathbb{R}\). (English) Zbl 07311263 Electron Res. Arch. 29, No. 2, 1945-1967 (2021). MSC: 35A01 35B45 35Q35 76A05 76D03 PDF BibTeX XML Cite \textit{Y. Chen} et al., Electron Res. Arch. 29, No. 2, 1945--1967 (2021; Zbl 07311263) Full Text: DOI
Hao, Zhaopeng; Zhang, Zhongqiang Fast spectral Petrov-Galerkin method for fractional elliptic equations. (English) Zbl 07311194 Appl. Numer. Math. 162, 318-330 (2021). MSC: 65N35 65N30 65N12 35B65 35A01 35A02 35R11 PDF BibTeX XML Cite \textit{Z. Hao} and \textit{Z. Zhang}, Appl. Numer. Math. 162, 318--330 (2021; Zbl 07311194) Full Text: DOI
Correia, Simão Nonlinear smoothing and unconditional uniqueness for the Benjamin-Ono equation in weighted Sobolev spaces. (English) Zbl 07310976 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112227, 13 p. (2021). MSC: 35Q35 35A02 35B65 42B37 PDF BibTeX XML Cite \textit{S. Correia}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112227, 13 p. (2021; Zbl 07310976) Full Text: DOI
Kinoshita, Shinya Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. (English) Zbl 07307589 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 451-505 (2021). MSC: 35Q53 35A01 PDF BibTeX XML Cite \textit{S. Kinoshita}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 451--505 (2021; Zbl 07307589) Full Text: DOI
Sun, Liwei; Qian, Chenyin The global regularity for 3D inhomogeneous incompressible fluids with vacuum. (English) Zbl 07307163 Appl. Math. Lett. 113, Article ID 106885, 8 p. (2021). MSC: 35Q35 76 PDF BibTeX XML Cite \textit{L. Sun} and \textit{C. Qian}, Appl. Math. Lett. 113, Article ID 106885, 8 p. (2021; Zbl 07307163) Full Text: DOI
Kwon, Hyunju Strong ill-posedness of logarithmically regularized 2D Euler equations in the borderline Sobolev space. (English) Zbl 07306985 J. Funct. Anal. 280, No. 7, Article ID 108822, 56 p. (2021). MSC: 35Q31 35D30 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Kwon}, J. Funct. Anal. 280, No. 7, Article ID 108822, 56 p. (2021; Zbl 07306985) Full Text: DOI
Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 07305945 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 07305945) Full Text: DOI
Wen, Huanyao; Yang, Tong; Zhao, Xinhua; Zhu, Changjiang Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier-Stokes equations with cylindrical symmetry. (English. French summary) Zbl 07305910 J. Math. Pures Appl. (9) 146, 99-126 (2021). MSC: 76N20 35Q30 76N10 76N17 PDF BibTeX XML Cite \textit{H. Wen} et al., J. Math. Pures Appl. (9) 146, 99--126 (2021; Zbl 07305910) Full Text: DOI
Gao, Tingran; Brodzki, Jacek; Mukherjee, Sayan The geometry of synchronization problems and learning group actions. (English) Zbl 07303730 Discrete Comput. Geom. 65, No. 1, 150-211 (2021). MSC: 05C50 62H30 57R22 58A14 28D05 35B65 35J60 49N90 49Q20 PDF BibTeX XML Cite \textit{T. Gao} et al., Discrete Comput. Geom. 65, No. 1, 150--211 (2021; Zbl 07303730) Full Text: DOI
Yan, Weiping; Rădulescu, Vicenţiu D. Global small finite energy solutions for the incompressible magnetohydrodynamics equations in \(\mathbb{R}^+ \times \mathbb{R}^2\). (English) Zbl 07303696 J. Differ. Equations 277, 114-152 (2021). MSC: 76W05 35A02 35B36 35Q35 76W05 35B65 35A01 42B25 PDF BibTeX XML Cite \textit{W. Yan} and \textit{V. D. Rădulescu}, J. Differ. Equations 277, 114--152 (2021; Zbl 07303696) Full Text: DOI
Shang, Haifeng; Wu, Jiahong Global regularity for 2D fractional magneto-micropolar equations. (English) Zbl 07303593 Math. Z. 297, No. 1-2, 775-802 (2021). MSC: 35Q35 35B65 76A10 42B25 42A38 35B45 35R11 PDF BibTeX XML Cite \textit{H. Shang} and \textit{J. Wu}, Math. Z. 297, No. 1--2, 775--802 (2021; Zbl 07303593) Full Text: DOI
Huang, Jiaxi; Jiang, Ning; Luo, Yi-Long; Zhao, Lifeng Small data global regularity for the 3-D Ericksen-Leslie hyperbolic liquid crystal model without kinematic transport. (English) Zbl 07302463 SIAM J. Math. Anal. 53, No. 1, 530-573 (2021). MSC: 35Q35 76A15 35M30 35L52 76D03 82D15 82D25 35B35 35B65 PDF BibTeX XML Cite \textit{J. Huang} et al., SIAM J. Math. Anal. 53, No. 1, 530--573 (2021; Zbl 07302463) Full Text: DOI
Trakhinin, Yuri; Wang, Tao Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics. (English) Zbl 07300731 Arch. Ration. Mech. Anal. 239, No. 2, 1131-1176 (2021). MSC: 35Q35 76W05 76N10 76Y05 76X05 35A01 35A02 35R35 PDF BibTeX XML Cite \textit{Y. Trakhinin} and \textit{T. Wang}, Arch. Ration. Mech. Anal. 239, No. 2, 1131--1176 (2021; Zbl 07300731) Full Text: DOI
Ren, Xiaoxia; Xiang, Zhaoyin Low regularity well-posedness for the 3D viscous non-resistive MHD system with internal surface wave. (English) Zbl 07299350 J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021). MSC: 35Q35 76W05 35A01 35A02 35D35 35B65 PDF BibTeX XML Cite \textit{X. Ren} and \textit{Z. Xiang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021; Zbl 07299350) Full Text: DOI
Grün, G.; Weiß, P. On the field-induced transport of magnetic nanoparticles in incompressible flow: existence of global solutions. (English) Zbl 07299346 J. Math. Fluid Mech. 23, No. 1, Paper No. 10, 54 p. (2021). MSC: 35Q35 76W05 76T20 35D30 35B65 35A01 65M60 PDF BibTeX XML Cite \textit{G. Grün} and \textit{P. Weiß}, J. Math. Fluid Mech. 23, No. 1, Paper No. 10, 54 p. (2021; Zbl 07299346) Full Text: DOI
Miura, Tatsu-Hiko Navier-Stokes equations in a curved thin domain. II: Global existence of a strong solution. (English) Zbl 07299343 J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021). MSC: 35Q30 76D03 76D05 76A20 35D35 35A01 PDF BibTeX XML Cite \textit{T.-H. Miura}, J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021; Zbl 07299343) Full Text: DOI
Huang, Bingkang; Liu, Lvqiao; Zhang, Lan Global dynamics of 3-D compressible micropolar fluids with vacuum and large oscillations. (English) Zbl 07299342 J. Math. Fluid Mech. 23, No. 1, Paper No. 6, 50 p. (2021). MSC: 76N10 76A05 35Q35 80A19 PDF BibTeX XML Cite \textit{B. Huang} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 6, 50 p. (2021; Zbl 07299342) Full Text: DOI
Wang, Yinghui; Wen, Huanyao; Yao, Lei On a non-conservative compressible two-fluid model in a bounded domain: global existence and uniqueness. (English) Zbl 07299340 J. Math. Fluid Mech. 23, No. 1, Paper No. 4, 24 p. (2021). MSC: 76T10 76N10 35B40 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 4, 24 p. (2021; Zbl 07299340) Full Text: DOI
Xu, Xiangsheng Nonlinear diffusion in the Keller-Segel model of parabolic-parabolic type. (English) Zbl 07297750 J. Differ. Equations 276, 264-286 (2021). MSC: 35B45 35B65 35Q92 35K51 PDF BibTeX XML Cite \textit{X. Xu}, J. Differ. Equations 276, 264--286 (2021; Zbl 07297750) Full Text: DOI
Lima Alves, Ricardo Existence of positive solution for a singular elliptic problem with an asymptotically linear nonlinearity. (English) Zbl 07297206 Mediterr. J. Math. 18, No. 1, Paper No. 4, 17 p. (2021). MSC: 35J75 35J25 35B09 35B32 35B33 35B38 35B65 PDF BibTeX XML Cite \textit{R. Lima Alves}, Mediterr. J. Math. 18, No. 1, Paper No. 4, 17 p. (2021; Zbl 07297206) Full Text: DOI
Pan, Xinghong Global existence and convergence to the modified Barenblatt solution for the compressible Euler equations with physical vacuum and time-dependent damping. (English) Zbl 07296597 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 5, 43 p. (2021). MSC: 35Q31 76N10 76S05 35B65 35A01 35R35 PDF BibTeX XML Cite \textit{X. Pan}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 5, 43 p. (2021; Zbl 07296597) Full Text: DOI
Lin, Xueyun; Zhang, Ting Local well-posedness for 2D incompressible magneto-micropolar boundary layer system. (English) Zbl 07291041 Appl. Anal. 100, No. 1, 206-227 (2021). MSC: 76W05 35B65 35Q35 35A01 PDF BibTeX XML Cite \textit{X. Lin} and \textit{T. Zhang}, Appl. Anal. 100, No. 1, 206--227 (2021; Zbl 07291041) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 07289443 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 07289443) Full Text: DOI
Wu, Jiahong; Zhu, Yi Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. (English) Zbl 07289442 Adv. Math. 377, Article ID 107466, 27 p. (2021). MSC: 35Q35 76W05 76D05 76E25 76D03 35A01 35A02 35B35 35B65 PDF BibTeX XML Cite \textit{J. Wu} and \textit{Y. Zhu}, Adv. Math. 377, Article ID 107466, 27 p. (2021; Zbl 07289442) Full Text: DOI
Marveggio, Alice; Schimperna, Giulio On a non-isothermal Cahn-Hilliard model based on a microforce balance. (English) Zbl 07289120 J. Differ. Equations 274, 924-970 (2021). MSC: 35K41 35K55 80A22 74A15 PDF BibTeX XML Cite \textit{A. Marveggio} and \textit{G. Schimperna}, J. Differ. Equations 274, 924--970 (2021; Zbl 07289120) Full Text: DOI
Guo, Zhenhua; Li, Qingyan Global existence and large time behaviors of the solutions to the full incompressible Navier-Stokes equations with temperature-dependent coefficients. (English) Zbl 07289119 J. Differ. Equations 274, 876-923 (2021). MSC: 35Q35 35B65 35B40 76N10 76N06 76A05 35A01 35D35 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{Q. Li}, J. Differ. Equations 274, 876--923 (2021; Zbl 07289119) Full Text: DOI
Ogawa, Takayoshi; Shimizu, Senjo Global well-posedness for the incompressible Navier-Stokes equations in the critical Besov space under the Lagrangian coordinates. (English) Zbl 07289113 J. Differ. Equations 274, 613-651 (2021). MSC: 35Q30 76D05 42B25 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{S. Shimizu}, J. Differ. Equations 274, 613--651 (2021; Zbl 07289113) Full Text: DOI
Liu, Lvqiao; Tan, Jin Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces. (English) Zbl 07289107 J. Differ. Equations 274, 382-413 (2021). MSC: 35Q35 76D03 76W05 35B35 35A01 35A02 86A10 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Tan}, J. Differ. Equations 274, 382--413 (2021; Zbl 07289107) Full Text: DOI
Krupa, Sam G. Finite time stability for the Riemann problem with extremal shocks for a large class of hyperbolic systems. (English) Zbl 07289095 J. Differ. Equations 273, 122-171 (2021). MSC: 35L65 76N15 35L45 35A02 35B35 35D30 35L67 35Q31 76L05 35Q31 76N10 PDF BibTeX XML Cite \textit{S. G. Krupa}, J. Differ. Equations 273, 122--171 (2021; Zbl 07289095) Full Text: DOI
Yu, Haibo Global strong solutions to the 3D viscous liquid-gas two-phase flow model. (English) Zbl 07285701 J. Differ. Equations 272, 732-759 (2021). MSC: 35Q35 35B45 76N10 76T10 35D30 PDF BibTeX XML Cite \textit{H. Yu}, J. Differ. Equations 272, 732--759 (2021; Zbl 07285701) Full Text: DOI
Xu, Hao; Zhang, Jianwen Regularity and uniqueness for the compressible full Navier-Stokes equations. (English) Zbl 07285682 J. Differ. Equations 272, 46-73 (2021). MSC: 35Q35 35B65 76N10 PDF BibTeX XML Cite \textit{H. Xu} and \textit{J. Zhang}, J. Differ. Equations 272, 46--73 (2021; Zbl 07285682) Full Text: DOI
Chen, Zhengzheng; Wang, Di Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients. (English) Zbl 07284918 Nonlinear Anal., Real World Appl. 58, Article ID 103226, 36 p. (2021). MSC: 35Q35 35Q31 76A05 76N10 35B35 35D35 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{D. Wang}, Nonlinear Anal., Real World Appl. 58, Article ID 103226, 36 p. (2021; Zbl 07284918) Full Text: DOI
Liu, Yang; Zhong, Xin Global well-posedness to the 3D Cauchy problem of compressible non-isothermal nematic liquid crystal flows with vacuum. (English) Zbl 07284911 Nonlinear Anal., Real World Appl. 58, Article ID 103219, 24 p. (2021). MSC: 35Q35 76A15 76N10 76N06 35A01 35A02 35D35 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{X. Zhong}, Nonlinear Anal., Real World Appl. 58, Article ID 103219, 24 p. (2021; Zbl 07284911) Full Text: DOI
Choi, Young-Pil; Lee, Jaeseung; Yun, Seok-Bae Strong solutions to the inhomogeneous Navier-Stokes-BGK system. (English) Zbl 07284893 Nonlinear Anal., Real World Appl. 57, Article ID 103196, 33 p. (2021). MSC: 35Q30 35Q20 35D35 35B65 35A01 76P05 76D05 PDF BibTeX XML Cite \textit{Y.-P. Choi} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103196, 33 p. (2021; Zbl 07284893) Full Text: DOI
Cao, Xinru; Tao, Youshan Boundedness and stabilization enforced by mild saturation of taxis in a producer-scrounger model. (English) Zbl 07284886 Nonlinear Anal., Real World Appl. 57, Article ID 103189, 24 p. (2021). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{X. Cao} and \textit{Y. Tao}, Nonlinear Anal., Real World Appl. 57, Article ID 103189, 24 p. (2021; Zbl 07284886) Full Text: DOI
Kalousek, Martin; Schlömerkemper, Anja Dissipative solutions to a system for the flow of magnetoviscoelastic materials. (English) Zbl 07283607 J. Differ. Equations 271, 1023-1057 (2021). MSC: 35Q35 35Q56 35A01 35B65 76A10 76W05 74F15 PDF BibTeX XML Cite \textit{M. Kalousek} and \textit{A. Schlömerkemper}, J. Differ. Equations 271, 1023--1057 (2021; Zbl 07283607) Full Text: DOI
Jian, Huaiyu; Li, You Global regularity for minimal graphs over convex domains in hyperbolic space. (English) Zbl 07283604 J. Differ. Equations 271, 963-978 (2021). Reviewer: Huansong Zhou (Wuhan) MSC: 35J93 35B65 35J25 PDF BibTeX XML Cite \textit{H. Jian} and \textit{Y. Li}, J. Differ. Equations 271, 963--978 (2021; Zbl 07283604) Full Text: DOI
Matsui, Tatsuya; Nakasato, Ryosuke; Ogawa, Takayoshi Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier-Sobolev space. (English) Zbl 07283588 J. Differ. Equations 271, 414-446 (2021). MSC: 35Q35 35Q60 76W05 76D05 35K05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Matsui} et al., J. Differ. Equations 271, 414--446 (2021; Zbl 07283588) Full Text: DOI
Ye, Zhuan Global well-posedness for a model of 2D temperature-dependent Boussinesq equations without diffusivity. (English) Zbl 07283577 J. Differ. Equations 271, 107-127 (2021). MSC: 35Q35 35B65 76D03 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Ye}, J. Differ. Equations 271, 107--127 (2021; Zbl 07283577) Full Text: DOI
Lyubanova, Anna Sh. Nonlinear boundary value problem for pseudoparabolic equation. (English) Zbl 1451.35076 J. Math. Anal. Appl. 493, No. 2, Article ID 124514, 18 p. (2021). MSC: 35K70 35K20 35K60 35B65 PDF BibTeX XML Cite \textit{A. Sh. Lyubanova}, J. Math. Anal. Appl. 493, No. 2, Article ID 124514, 18 p. (2021; Zbl 1451.35076) Full Text: DOI
Zhai, Xiaoping On some large solutions to the damped Boussinesq system. (English) Zbl 07258395 Appl. Math. Lett. 111, Article ID 106621, 6 p. (2021). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q35 76D03 42B25 PDF BibTeX XML Cite \textit{X. Zhai}, Appl. Math. Lett. 111, Article ID 106621, 6 p. (2021; Zbl 07258395) Full Text: DOI
Deng, Lihua; Shang, Haifeng Global well-posedness for \(n\)-dimensional magneto-micropolar equations with hyperdissipation. (English) Zbl 1451.35129 Appl. Math. Lett. 111, Article ID 106610, 8 p. (2021). MSC: 35Q35 76A05 76W05 35B65 35A01 35A02 35R11 26A33 PDF BibTeX XML Cite \textit{L. Deng} and \textit{H. Shang}, Appl. Math. Lett. 111, Article ID 106610, 8 p. (2021; Zbl 1451.35129) Full Text: DOI
Tsuge, Naoki Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow. (English) Zbl 07315518 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 666-673 (2020). MSC: 35L03 35L65 35Q31 76N10 76N15 35A01 35B35 35B50 35L60 76H05 76M20 PDF BibTeX XML Cite \textit{N. Tsuge}, AIMS Ser. Appl. Math. 10, 666--673 (2020; Zbl 07315518)
Burtscher, Annegret Y. Initial data and black holes for matter models. (English) Zbl 07315478 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 336-345 (2020). MSC: 83C05 83C57 83C75 35A01 35D30 76N10 PDF BibTeX XML Cite \textit{A. Y. Burtscher}, AIMS Ser. Appl. Math. 10, 336--345 (2020; Zbl 07315478)
Bae, Myoungjean; Xiang, Wei A note on 2-D detached shocks of steady Euler system. (English) Zbl 07315457 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 124-135 (2020). MSC: 35A01 35J25 35J62 35M10 35Q31 35R35 76H05 76L05 76N10 PDF BibTeX XML Cite \textit{M. Bae} and \textit{W. Xiang}, AIMS Ser. Appl. Math. 10, 124--135 (2020; Zbl 07315457)
Ahmad, Shair; Le, Dung Existence of attractors when diffusion and reaction have polynomial growth. (English) Zbl 07312831 Rend. Ist. Mat. Univ. Trieste 52, 267-287 (2020). MSC: 35J70 35B65 42B37 PDF BibTeX XML Cite \textit{S. Ahmad} and \textit{D. Le}, Rend. Ist. Mat. Univ. Trieste 52, 267--287 (2020; Zbl 07312831) Full Text: DOI
Murata, Miho; Shibata, Yoshihiro The global well-posedness of the Navier-Stokes-Korteweg equations. (English) Zbl 07311527 RIMS Kôkyûroku Bessatsu B82, 11-28 (2020). MSC: 35Q35 PDF BibTeX XML Cite \textit{M. Murata} and \textit{Y. Shibata}, RIMS Kôkyûroku Bessatsu B82, 11--28 (2020; Zbl 07311527) Full Text: Link
Shang, Zhaoyang Global existence and large time behavior of solutions for full compressible Hall-MHD equations. (English) Zbl 07304797 Appl. Anal. 99, No. 11, 1865-1888 (2020). MSC: 35Q35 35D35 76W05 76N10 35A01 PDF BibTeX XML Cite \textit{Z. Shang}, Appl. Anal. 99, No. 11, 1865--1888 (2020; Zbl 07304797) Full Text: DOI
Wei, Ruiying; Li, Yin; Guo, Boling Global existence and convergence rates of solutions for the 3D compressible magnetohydrodynamic equations without heat conductivity. (English) Zbl 07304780 Appl. Anal. 99, No. 10, 1661-1684 (2020). MSC: 35Q30 76N10 76N15 76W05 82C40 PDF BibTeX XML Cite \textit{R. Wei} et al., Appl. Anal. 99, No. 10, 1661--1684 (2020; Zbl 07304780) Full Text: DOI
Zhou, Mulan On well-posedness and blow-up criterion for the 2D tropical climate model. (English) Zbl 07303796 Bull. Korean Math. Soc. 57, No. 4, 891-907 (2020). MSC: 35Q86 35D35 76D03 PDF BibTeX XML Cite \textit{M. Zhou}, Bull. Korean Math. Soc. 57, No. 4, 891--907 (2020; Zbl 07303796) Full Text: DOI
Naber, Aaron Conjectures and open questions on the structure and regularity of spaces with lower Ricci curvature bounds. (English) Zbl 07302809 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 104, 8 p. (2020). MSC: 53-02 53C21 53C23 PDF BibTeX XML Cite \textit{A. Naber}, SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 104, 8 p. (2020; Zbl 07302809) Full Text: DOI
Lischke, Anna; Pang, Guofei; Gulian, Mamikon; Song, Fangying; Glusa, Christian; Zheng, Xiaoning; Mao, Zhiping; Cai, Wei; Meerschaert, Mark M.; Ainsworth, Mark; Karniadakis, George Em What is the fractional Laplacian? A comparative review with new results. (English) Zbl 1453.35179 J. Comput. Phys. 404, Article ID 109009, 62 p. (2020). MSC: 35R11 60G51 35A01 35A02 65N30 65C05 35-02 65-02 PDF BibTeX XML Cite \textit{A. Lischke} et al., J. Comput. Phys. 404, Article ID 109009, 62 p. (2020; Zbl 1453.35179) Full Text: DOI
Qiu, Hua; Yao, Zheng-An The regularized Boussinesq equations with partial dissipations in dimension two. (English) Zbl 07300748 Electron Res. Arch. 28, No. 4, 1375-1393 (2020). MSC: 35Q35 76D03 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Qiu} and \textit{Z.-A. Yao}, Electron Res. Arch. 28, No. 4, 1375--1393 (2020; Zbl 07300748) Full Text: DOI
Du, Qiang; Yang, Jiang; Zhou, Zhi Time-fractional Allen-Cahn equations: analysis and numerical methods. (English) Zbl 07299267 J. Sci. Comput. 85, No. 2, Paper No. 42, 29 p. (2020). MSC: 65M06 65N06 65M15 65R20 35B65 35B50 35R11 35A01 35A02 PDF BibTeX XML Cite \textit{Q. Du} et al., J. Sci. Comput. 85, No. 2, Paper No. 42, 29 p. (2020; Zbl 07299267) Full Text: DOI
Shangerganesh, L.; Manimaran, J. Mathematical and numerical analysis of an acid-mediated cancer invasion model with nonlinear diffusion. (English) Zbl 07297616 ETNA, Electron. Trans. Numer. Anal. 52, 576-598 (2020). MSC: 35Q92 92C37 92C17 35D30 35B45 35B65 35A01 35K57 35K55 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{L. Shangerganesh} and \textit{J. Manimaran}, ETNA, Electron. Trans. Numer. Anal. 52, 576--598 (2020; Zbl 07297616) Full Text: DOI Link
Bhimani, Divyang G.; Carles, Rémi Norm inflation for nonlinear Schrödinger equations in Fourier-Lebesgue and modulation spaces of negative regularity. (English) Zbl 07296357 J. Fourier Anal. Appl. 26, No. 6, Paper No. 78, 33 p. (2020). MSC: 35Q55 35Q41 42B35 35A01 35B65 35R25 78A05 PDF BibTeX XML Cite \textit{D. G. Bhimani} and \textit{R. Carles}, J. Fourier Anal. Appl. 26, No. 6, Paper No. 78, 33 p. (2020; Zbl 07296357) Full Text: DOI
Zhang, Junjie; Zheng, Shenzhou; Feng, Zhaosheng Weighted \(L^{p(\cdot)}\)-regularity for fully nonlinear parabolic equations. (English) Zbl 07294611 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 190, 29 p. (2020). MSC: 35B65 35D35 35K55 35K87 35K20 PDF BibTeX XML Cite \textit{J. Zhang} et al., Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 190, 29 p. (2020; Zbl 07294611) Full Text: DOI
Murata, Miho; Shibata, Yoshihiro The global well-posedness for the compressible fluid model of Korteweg type. (English) Zbl 07289139 SIAM J. Math. Anal. 52, No. 6, 6313-6337 (2020). MSC: 35Q35 76N06 35D35 35B65 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{M. Murata} and \textit{Y. Shibata}, SIAM J. Math. Anal. 52, No. 6, 6313--6337 (2020; Zbl 07289139) Full Text: DOI
Calsavara, Bianca M.; Guillen-Gonzalez, Francisco Existence of global-in-time weak solutions for a solidification model with convection in the liquid and rigid motion in the solid. (English) Zbl 07289136 SIAM J. Math. Anal. 52, No. 6, 6260-6280 (2020). MSC: 35Q35 35Q79 35B65 35K51 35A01 35D30 76A15 76D03 35B65 80A22 PDF BibTeX XML Cite \textit{B. M. Calsavara} and \textit{F. Guillen-Gonzalez}, SIAM J. Math. Anal. 52, No. 6, 6260--6280 (2020; Zbl 07289136) Full Text: DOI
Selmi, Ridha; Zaabi, Mounia Mathematical study to a regularized 3D-Boussinesq system. (English) Zbl 07286086 Mem. Differ. Equ. Math. Phys. 79, 93-105 (2020). MSC: 35Q35 35A01 35A02 35B30 35B40 35B10 35B45 35B65 35D30 35A23 PDF BibTeX XML Cite \textit{R. Selmi} and \textit{M. Zaabi}, Mem. Differ. Equ. Math. Phys. 79, 93--105 (2020; Zbl 07286086) Full Text: Link
Amosova, E. V. Exact local controllability of a two-dimensional viscous gas flow. (English. Russian original) Zbl 07284438 Differ. Equ. 56, No. 11, 1416-1439 (2020); translation from Differ. Uravn. 56, No. 11, 1455-1478 (2020). MSC: 35Q30 76N15 76N10 35A01 93B05 PDF BibTeX XML Cite \textit{E. V. Amosova}, Differ. Equ. 56, No. 11, 1416--1439 (2020; Zbl 07284438); translation from Differ. Uravn. 56, No. 11, 1455--1478 (2020) Full Text: DOI
Henderson, Christopher; Snelson, Stanley; Tarfulea, Andrei Local solutions of the Landau equation with rough, slowly decaying initial data. (English. French summary) Zbl 07283945 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 6, 1345-1377 (2020). MSC: 35Q49 35Q20 35A09 35B65 35A01 35A02 82C40 PDF BibTeX XML Cite \textit{C. Henderson} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 6, 1345--1377 (2020; Zbl 07283945) Full Text: DOI
Bresch, Didier; Burtea, C. Global existence of weak solutions for the anisotropic compressible Stokes system. (English) Zbl 07283943 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 6, 1271-1297 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 76N10 35D30 35D35 35B35 35A01 35A02 PDF BibTeX XML Cite \textit{D. Bresch} and \textit{C. Burtea}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 6, 1271--1297 (2020; Zbl 07283943) Full Text: DOI
Li, Jinlu; Yu, Yanghai A class of large solution of 2D tropical climate model without thermal diffusion. (English) Zbl 07279032 Math. Methods Appl. Sci. 43, No. 15, 9005-9013 (2020). MSC: 35Q86 86A08 35D35 76D03 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Yu}, Math. Methods Appl. Sci. 43, No. 15, 9005--9013 (2020; Zbl 07279032) Full Text: DOI
Yan, Niannian; Zhao, Bin Global well-posedness and large time behavior to the two-phase compressible-incompressible flow with free boundary. (English) Zbl 07278998 Math. Methods Appl. Sci. 43, No. 15, 8466-8487 (2020). MSC: 35Q35 76T06 76D45 76N10 35B40 35R35 35A01 35A02 PDF BibTeX XML Cite \textit{N. Yan} and \textit{B. Zhao}, Math. Methods Appl. Sci. 43, No. 15, 8466--8487 (2020; Zbl 07278998) Full Text: DOI
Klingenberg, Christian; Kreml, Ondřej; Mácha, Václav; Markfelder, Simon Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. (English) Zbl 1453.35143 Nonlinearity 33, No. 12, 6517-6540 (2020). MSC: 35Q31 35L65 35L67 76N10 76N15 35C06 35D30 35A02 35R25 PDF BibTeX XML Cite \textit{C. Klingenberg} et al., Nonlinearity 33, No. 12, 6517--6540 (2020; Zbl 1453.35143) Full Text: DOI
Shi, Weixuan; Xu, Jiang The large-time behavior of solutions in the critical \(L^p\) framework for compressible viscous and heat-conductive gas flows. (English) Zbl 1452.76203 J. Math. Phys. 61, No. 6, 061516, 27 p. (2020). MSC: 76N10 76N06 35Q30 80A19 PDF BibTeX XML Cite \textit{W. Shi} and \textit{J. Xu}, J. Math. Phys. 61, No. 6, 061516, 27 p. (2020; Zbl 1452.76203) Full Text: DOI
Jihui, Wu; Shu, Wang On the degenerate Cahn-Hilliard equation: global existence and entropy estimates of weak solutions. (English) Zbl 1452.35152 Asymptotic Anal. 119, No. 1-2, 1-38 (2020). MSC: 35Q35 35D30 35K65 35B65 35B40 35A01 PDF BibTeX XML Cite \textit{W. Jihui} and \textit{W. Shu}, Asymptotic Anal. 119, No. 1--2, 1--38 (2020; Zbl 1452.35152) Full Text: DOI
Miranville, Alain; Moroşanu, Costicǎ Qualitative and quantitative analysis for the mathematical models of phase separation and transition. Applications. (English) Zbl 1448.35009 AIMS Series on Differential Equations and Dynamical Systems 7. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-024-6). xxi, 266 p., open access (2020). MSC: 35-02 35K55 74-10 35K51 35K58 35A01 35A02 35B65 74A50 35K61 35Q56 74A15 80A22 PDF BibTeX XML Cite \textit{A. Miranville} and \textit{C. Moroşanu}, Qualitative and quantitative analysis for the mathematical models of phase separation and transition. Applications. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (2020; Zbl 1448.35009) Full Text: Link
Giorgini, Andrea; Temam, Roger Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system. (English. French summary) Zbl 1452.35151 J. Math. Pures Appl. (9) 144, 194-249 (2020). MSC: 35Q35 76D03 76D05 76T06 35A01 PDF BibTeX XML Cite \textit{A. Giorgini} and \textit{R. Temam}, J. Math. Pures Appl. (9) 144, 194--249 (2020; Zbl 1452.35151) Full Text: DOI
Bianchi, Davide; Pigola, Stefano; Setti, Alberto G. Qualitative properties of bounded subsolutions of nonlinear PDEs. (English. French summary) Zbl 07275214 J. Math. Pures Appl. (9) 144, 137-163 (2020). MSC: 58J05 31C12 35B45 35B51 53C21 35B09 35B65 PDF BibTeX XML Cite \textit{D. Bianchi} et al., J. Math. Pures Appl. (9) 144, 137--163 (2020; Zbl 07275214) Full Text: DOI
Wang, Xuecheng Global regularity for the 3D finite depth capillary water waves. (English) Zbl 1451.35142 Ann. Sci. Éc. Norm. Supér. (4) 53, No. 4, 847-943 (2020). MSC: 35Q35 76B15 76B45 35B65 35A01 35C07 PDF BibTeX XML Cite \textit{X. Wang}, Ann. Sci. Éc. Norm. Supér. (4) 53, No. 4, 847--943 (2020; Zbl 1451.35142) Full Text: DOI
Zhang, Xinli; Cai, Hong Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain. (English) Zbl 1451.35118 Z. Angew. Math. Phys. 71, No. 6, Paper No. 184, 23 p. (2020). MSC: 35Q30 35Q35 35B10 76N10 76A05 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{H. Cai}, Z. Angew. Math. Phys. 71, No. 6, Paper No. 184, 23 p. (2020; Zbl 1451.35118) Full Text: DOI
Wang, Yongfu Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. (English) Zbl 1451.35144 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4317-4333 (2020). MSC: 35Q35 35B65 76D03 PDF BibTeX XML Cite \textit{Y. Wang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4317--4333 (2020; Zbl 1451.35144) Full Text: DOI
Zhai, Xiaoping; Ye, Hailong On global large energy solutions to the viscous shallow water equations. (English) Zbl 1451.35145 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4277-4293 (2020). MSC: 35Q35 76N10 76B15 35B40 35B45 42B25 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{H. Ye}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4277--4293 (2020; Zbl 1451.35145) Full Text: DOI
Xiang, Shuyang; Cao, Yangyang Global existence for a one-dimensional non-relativistic Euler model with relaxation. (English) Zbl 1452.35140 Port. Math. (N.S.) 77, No. 1, 45-71 (2020). MSC: 35Q31 35L60 65M08 76N10 35D30 76L05 35A01 PDF BibTeX XML Cite \textit{S. Xiang} and \textit{Y. Cao}, Port. Math. (N.S.) 77, No. 1, 45--71 (2020; Zbl 1452.35140) Full Text: DOI
Tan, Zhong; Wang, Yong; Wu, Wenpei Mathematical modeling and qualitative analysis of viscoelastic conductive fluids. (English) Zbl 1451.76008 Anal. Appl., Singap. 18, No. 6, 1077-1117 (2020). MSC: 76A10 76N10 76W05 76M30 35Q35 PDF BibTeX XML Cite \textit{Z. Tan} et al., Anal. Appl., Singap. 18, No. 6, 1077--1117 (2020; Zbl 1451.76008) Full Text: DOI
Gérard-Varet, David; Masmoudi, Nader; Vicol, Vlad Well-posedness of the hydrostatic Navier-Stokes equations. (English) Zbl 1451.35109 Anal. PDE 13, No. 5, 1417-1455 (2020). MSC: 35Q30 35Q35 76D05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{D. Gérard-Varet} et al., Anal. PDE 13, No. 5, 1417--1455 (2020; Zbl 1451.35109) Full Text: DOI
Cannarsa, Piermarco; Mendico, Cristian Mild and weak solutions of mean field game problems for linear control systems. (English) Zbl 07271750 Minimax Theory Appl. 5, No. 2, 221-250 (2020). MSC: 35Q91 91A16 35A01 35A02 49J30 49J53 49N90 35B65 35D30 PDF BibTeX XML Cite \textit{P. Cannarsa} and \textit{C. Mendico}, Minimax Theory Appl. 5, No. 2, 221--250 (2020; Zbl 07271750) Full Text: Link
Zhai, Xiaoping; Chen, Yiren Global strong solutions and time decay of 2D tropical climate model with zero thermal diffusion. (English) Zbl 1451.35224 Math. Methods Appl. Sci. 43, No. 11, 7022-7039 (2020). MSC: 35Q86 86A08 35Q35 35B65 35D35 76B03 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Chen}, Math. Methods Appl. Sci. 43, No. 11, 7022--7039 (2020; Zbl 1451.35224) Full Text: DOI
Zhu, Yi Global existence of classical solutions for the 3D generalized compressible Oldroyd-B model. (English) Zbl 1451.35124 Math. Methods Appl. Sci. 43, No. 10, 6517-6528 (2020). MSC: 35Q31 76A10 76N10 35A01 35A09 PDF BibTeX XML Cite \textit{Y. Zhu}, Math. Methods Appl. Sci. 43, No. 10, 6517--6528 (2020; Zbl 1451.35124) Full Text: DOI
Morimoto, Yoshinori; Xu, Chao-Jiang Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. (English) Zbl 1451.35154 Kinet. Relat. Models 13, No. 5, 951-978 (2020). MSC: 35Q49 35B65 35Q82 35S05 82D10 35Q20 35A02 35A20 PDF BibTeX XML Cite \textit{Y. Morimoto} and \textit{C.-J. Xu}, Kinet. Relat. Models 13, No. 5, 951--978 (2020; Zbl 1451.35154) Full Text: DOI
Moreno-Mérida, Lourdes; Porzio, Maria Michaela Existence and asymptotic behavior of a parabolic equation with \(L^1\) data. (English) Zbl 07268679 Asymptotic Anal. 118, No. 3, 143-159 (2020). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35K20 35B40 35B65 35A01 35D30 PDF BibTeX XML Cite \textit{L. Moreno-Mérida} and \textit{M. M. Porzio}, Asymptotic Anal. 118, No. 3, 143--159 (2020; Zbl 07268679) Full Text: DOI
Arora, R.; Giacomoni, J.; Goel, D.; Sreenadh, K. Positive solutions of 1-D half Laplacian equation with singular and exponential nonlinearity. (English) Zbl 07268674 Asymptotic Anal. 118, No. 1-2, 1-34 (2020). MSC: 35J05 35R11 35B09 35B40 35B65 35A01 PDF BibTeX XML Cite \textit{R. Arora} et al., Asymptotic Anal. 118, No. 1--2, 1--34 (2020; Zbl 07268674) Full Text: DOI
Colombo, Maria; De Rosa, Luigi; Forcella, Luigi Regularity results for rough solutions of the incompressible Euler equations via interpolation methods. (English) Zbl 1450.35209 Nonlinearity 33, No. 9, 4818-4836 (2020). MSC: 35Q31 35A01 35D30 35B65 PDF BibTeX XML Cite \textit{M. Colombo} et al., Nonlinearity 33, No. 9, 4818--4836 (2020; Zbl 1450.35209) Full Text: DOI
Hwang, Hyung Ju; Jang, Jin Woo Compactness properties and local existence of weak solutions to the Landau equation. (English) Zbl 1450.35255 Proc. Am. Math. Soc. 148, No. 12, 5141-5157 (2020). MSC: 35Q84 35Q20 82C40 35B45 34C29 35B65 35D30 35A01 PDF BibTeX XML Cite \textit{H. J. Hwang} and \textit{J. W. Jang}, Proc. Am. Math. Soc. 148, No. 12, 5141--5157 (2020; Zbl 1450.35255) Full Text: DOI
Ruan, Tingwei; Jiang, Qian; Luo, Hong Regularity of global attractor for the damped Navier-Stokes equations. (English) Zbl 07267271 Math. Appl. 33, No. 2, 443-448 (2020). MSC: 35B65 35B41 35Q30 PDF BibTeX XML Cite \textit{T. Ruan} et al., Math. Appl. 33, No. 2, 443--448 (2020; Zbl 07267271)
Xu, Xiujuan; Yan, Shuo; Zhu, Yeqing Global regularity for very weak solutions to non-homogeneous \(A\)-harmonic equation. (Chinese. English summary) Zbl 07266992 J. Shandong Univ., Nat. Sci. 55, No. 2, 48-56, 67 (2020). MSC: 35B65 35D30 35J25 PDF BibTeX XML Cite \textit{X. Xu} et al., J. Shandong Univ., Nat. Sci. 55, No. 2, 48--56, 67 (2020; Zbl 07266992) Full Text: DOI
Bhatnagar, Manas; Liu, Hailiang Critical thresholds in one-dimensional damped Euler-Poisson systems. (English) Zbl 1453.35145 Math. Models Methods Appl. Sci. 30, No. 5, 891-916 (2020). Reviewer: Luisa Consiglieri (Lisboa) MSC: 35Q35 35Q60 35B65 35C05 35E15 76W05 35A02 35A01 34A34 34A30 PDF BibTeX XML Cite \textit{M. Bhatnagar} and \textit{H. Liu}, Math. Models Methods Appl. Sci. 30, No. 5, 891--916 (2020; Zbl 1453.35145) Full Text: DOI
Duan, Lipeng; Yang, Jun Symmetric vortices for two-component \(p\)-Ginzburg-Landau systems. (English) Zbl 07265008 J. Math. Anal. Appl. 491, No. 2, Article ID 124347, 15 p. (2020). MSC: 35Q56 82D55 35B35 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{L. Duan} and \textit{J. Yang}, J. Math. Anal. Appl. 491, No. 2, Article ID 124347, 15 p. (2020; Zbl 07265008) Full Text: DOI
Grekhneva, A. D.; Sakbaev, V. Zh. Dynamics of a set of quantum states generated by a nonlinear Liouville-von Neumann equation. (English. Russian original) Zbl 1450.35238 Comput. Math. Math. Phys. 60, No. 8, 1337-1347 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1383-1393 (2020). MSC: 35Q55 81Q10 35B65 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{A. D. Grekhneva} and \textit{V. Zh. Sakbaev}, Comput. Math. Math. Phys. 60, No. 8, 1337--1347 (2020; Zbl 1450.35238); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1383--1393 (2020) Full Text: DOI
Cheng, Kelong; Wang, Cheng; Wise, Steven M.; Yuan, Zixia Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. (English) Zbl 1450.35135 Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2211-2229 (2020). MSC: 35K35 35K55 35A01 35B65 PDF BibTeX XML Cite \textit{K. Cheng} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2211--2229 (2020; Zbl 1450.35135) Full Text: DOI
Fürdös, Stefan Geometric microlocal analysis in Denjoy-Carleman classes. (English) Zbl 1451.35007 Pac. J. Math. 307, No. 2, 303-351 (2020). MSC: 35A18 35A27 26E10 35A02 35A30 PDF BibTeX XML Cite \textit{S. Fürdös}, Pac. J. Math. 307, No. 2, 303--351 (2020; Zbl 1451.35007) Full Text: DOI
Schimperna, Giulio; Wu, Hao On a class of sixth-order Cahn-Hilliard-type equations with logarithmic potential. (English) Zbl 1450.35136 SIAM J. Math. Anal. 52, No. 5, 5155-5195 (2020). MSC: 35K35 35K55 35A01 47H05 35B41 35B65 PDF BibTeX XML Cite \textit{G. Schimperna} and \textit{H. Wu}, SIAM J. Math. Anal. 52, No. 5, 5155--5195 (2020; Zbl 1450.35136) Full Text: DOI
Gazzola, Filippo; Sperone, Gianmarco Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for unique solvability. (English) Zbl 1451.35107 Arch. Ration. Mech. Anal. 238, No. 3, 1283-1347 (2020). MSC: 35Q30 35Q35 35D30 76D05 76D17 76G25 35B65 35B06 74F10 74B20 74K20 35A02 PDF BibTeX XML Cite \textit{F. Gazzola} and \textit{G. Sperone}, Arch. Ration. Mech. Anal. 238, No. 3, 1283--1347 (2020; Zbl 1451.35107) Full Text: DOI