×

An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. (English) Zbl 1291.65300

Summary: An adaptive a posteriori error estimator based finite element method for the numerical solution of a coupled Cahn-Hilliard/Navier-Stokes system with a double-obstacle homogenous free (interfacial) energy density is proposed. A semi-implicit Euler scheme for the time-integration is applied which results in a system coupling a quasi-Stokes or Oseen-type problem for the fluid flow to a variational inequality for the concentration and the chemical potential according to the Cahn-Hilliard model [J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I: Interfacial free energy”, J. Chem. Phys. 28, 258–267 (1958)]. A Moreau-Yosida regularization is employed which relaxes the constraints contained in the variational inequality and, thus, enables semi-smooth Newton solvers with locally superlinear convergence in function space. Moreover, upon discretization this yields a mesh independent method for a fixed relaxation parameter. For the finite dimensional approximation of the concentration and the chemical potential piecewise linear and globally continuous finite elements are used, and for the numerical approximation of the fluid velocity Taylor-Hood finite elements are employed. The paper ends by a report on numerical examples showing the efficiency of the new method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
76T99 Multiphase and multicomponent flows

Software:

AFEM@matlab; CHOLMOD
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Adams, R. A., Sobolov Spaces, Pure and Applied Mathematics (1975), Academic Press
[3] Barrett, J. W.; Blowey, J. F.; Garcke, H., Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37, 286-318 (1999) · Zbl 0947.65109
[5] Blank, L.; Butz, M.; Garcke, H., Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method, ESAIM: Control Optim. Calculus Variations, 17, 4, 931-954 (2011) · Zbl 1233.35132
[6] Blowey, J. F.; Elliott, C. M., The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis, Eur. J. Appl. Math., 2, 233-280 (1991) · Zbl 0797.35172
[7] Blowey, J. F.; Elliott, C. M., A phase-field model with a double obstacle potential, Motion by Mean Curvature and Related Topics (Trento, 1992) (1994), de Gruyter: de Gruyter Berlin, pp. 1-22 · Zbl 0809.35168
[8] Boyer, F., Mathematical study of multiphase flow under shear through order parameter formulation, Asymptotic Anal., 20, 175-212 (1999) · Zbl 0937.35123
[9] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 41-68 (2002) · Zbl 1057.76060
[10] Boyer, F.; Chupin, L.; Fabrie, P., Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model, Eur. J. Mech. - B/Fluids, 23, 5, 759-780 (2004) · Zbl 1058.76531
[11] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B.; Quintard, M., Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media, 82, 3, 463-483 (2010)
[12] Braess, D., Finite Elements (2007), Cambridge University Press
[13] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods. The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics (2008), Springer · Zbl 1135.65042
[14] Brennier, Y.; Otto, F.; Seis, C., Upper bounds on coarsening rates in demixing binary viscous liquids, SIAM J. Math. Anal., 43, 1, 114-134 (2011) · Zbl 1226.82045
[15] Bristeau, M. O.; Glowinski, R.; Periaux, J., Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible flows, Comput. Phys. Rep., 6, 73-187 (1987)
[16] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system - I: Interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[18] Chen, Y.; Davis, T. A.; Hager, W. W.; Rajamanickam, S., Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate, ACM Trans. Math. Softw., 35, 3, 1-14 (2008)
[19] Deckelnick, K.; Dziuk, G.; Elliott, C. M., Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14, 139-232 (2005) · Zbl 1113.65097
[20] Dollar, H. S.; Gould, N. I.M.; Stoll, M.; Wathen, A. J., Preconditioning saddle-point systems with applications in optimization, SIAM J. Sci. Comput., 32, 1, 249-270 (2010) · Zbl 1209.65035
[21] Dörfler, D., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 1106-1124 (1996) · Zbl 0854.65090
[22] Elliott, C. M., The Cahn-Hilliard model for the kinetics of phase separation, Mathematical Models for Phase Change Problems. Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics, vol. 88 (1989), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0692.73003
[24] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems (1999), SIAM: SIAM Philadelphia · Zbl 0939.49002
[26] Gräser, C.; Kornhuber, R., Nonsmooth Newton methods for set-valued saddle point problems, SIAM J. Numer. Anal., 47, 2, 1251-1273 (2009) · Zbl 1190.49035
[27] Gräser, C.; Kornhuber, R., Multigrid methods for obstacle problems, J. Comput. Math., 27, 1, 1-44 (2009) · Zbl 1199.65401
[28] Hintermüller, M., Mesh-independence and fast local convergence of a primal-dual active set method for mixed control-state constrained elliptic control problems, ANZIAM J., 49, 1, 1-38 (2007) · Zbl 1154.65057
[29] Hintermüller, M.; Hinze, M., Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment, SIAM J. Numer. Anal., 47, 3, 1666-1683 (2009) · Zbl 1191.49036
[30] Hintermüller, M.; Hinze, M.; Tber, M. H., An adaptive finite element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem, Optim. Methods Softw., 25, 4-5, 777-811 (2011) · Zbl 1366.74070
[31] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Optim., 13, 3, 865-888 (2003) · Zbl 1080.90074
[32] Hintermüller, M.; Kopacka, I., A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs, Comput. Optim. Appl., 50, 1, 111-145 (2011) · Zbl 1229.49032
[33] Hintermüller, M.; Kunisch, K., Path-following methods for a class of constrained minimization problems in function space, SIAM J. Optim., 17, 159-187 (2006) · Zbl 1137.49028
[34] Hintermüller, M.; Ulbrich, M., A mesh-independence result for semi-smooth Newton methods, Math. Program., 101, 151-184 (2004) · Zbl 1079.65065
[35] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 3, 435-479 (1977)
[36] Kay, D.; Styles, V.; Welford, R., Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound., 10, 1, 15-43 (2008) · Zbl 1144.35043
[37] Kay, D.; Welford, R., A multigrid finite element solver for the Cahn-Hilliard equation, J. Comput. Phys., 212, 288-304 (2006) · Zbl 1081.65091
[38] Kay, D.; Welford, R., Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2d, SIAM J. Sci. Comput., 29, 6, 2241-2257 (2007) · Zbl 1154.76033
[39] Kim, J., A diffuse-interface model for axisymmetric immiscible two-phase flow, Appl. Math. Comput., 160, 589-606 (2005) · Zbl 1299.76043
[40] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193, 511-543 (2004) · Zbl 1109.76348
[41] Peters, J.; Reichelt, V.; Reusken, A., Fast iterative solvers for the discrete Stokes equations, SIAM J. Sci. Comput., 27, 2, 646-666 (2005) · Zbl 1095.65104
[42] Reusken, A., Analysis of an extended pressure finite element space for two-phase incompressible flows, Comput. Visual. Sci., 11, 4-6, 293-305 (2008)
[43] Siggia, E. D., Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 29, 2, 595-605 (1979)
[44] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam, New York, Oxford · Zbl 0568.35002
[45] Verfürth, R., Error estimates for a mixed finite element approximation of the Stokes equation, RAIRO Anal. Numér., 18, 2, 175-182 (1984) · Zbl 0557.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.