Ji, Chunyan; Yang, Xue; Li, Yong Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays. (English) Zbl 07307360 J. Dyn. Differ. Equations 33, No. 1, 135-176 (2021). MSC: 34K60 34K50 92D25 34K25 34K13 PDF BibTeX XML Cite \textit{C. Ji} et al., J. Dyn. Differ. Equations 33, No. 1, 135--176 (2021; Zbl 07307360) Full Text: DOI
Kulenović, M. R. S.; Mujić, Naida; Pilav, Esmir Period-doubling and Naimark-Sacker bifurcations of certain second-order quadratic fractional difference equations. (English) Zbl 07312906 Int. J. Difference Equ. 15, No. 1, 121-152 (2020). MSC: 39A10 39A20 39A60 37B25 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} et al., Int. J. Difference Equ. 15, No. 1, 121--152 (2020; Zbl 07312906) Full Text: Link
Chekroun, Abdennasser; Kuniya, Toshikazu An infection age-space structured SIR epidemic model with Neumann boundary condition. (English) Zbl 07304802 Appl. Anal. 99, No. 11, 1972-1985 (2020). MSC: 35Q92 37N25 92D30 35R09 45D05 PDF BibTeX XML Cite \textit{A. Chekroun} and \textit{T. Kuniya}, Appl. Anal. 99, No. 11, 1972--1985 (2020; Zbl 07304802) Full Text: DOI
Qin, Li; Wang, Xiaoyun Stability and Hopf bifurcation of a predator-prey model with double delays and stage structure. (English) Zbl 07295581 J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 15-21 (2020). MSC: 34K20 34K18 92D25 PDF BibTeX XML Cite \textit{L. Qin} and \textit{X. Wang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 15--21 (2020; Zbl 07295581) Full Text: DOI
Sousa, J. Vanterler da C.; Benchohra, Mouffak; N’Guérékata, Gaston M. Attractivity for differential equations of fractional order and \(\psi\)-Hilfer type. (English) Zbl 07268224 Fract. Calc. Appl. Anal. 23, No. 4, 1188-1207 (2020). MSC: 26A33 34A08 34G20 PDF BibTeX XML Cite \textit{J. V. da C. Sousa} et al., Fract. Calc. Appl. Anal. 23, No. 4, 1188--1207 (2020; Zbl 07268224) Full Text: DOI
Huang, Chuangxia; Wang, Jiafu; Huang, Lihong Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure. (English) Zbl 07244080 Electron. J. Differ. Equ. 2020, Paper No. 61, 17 p. (2020). MSC: 34K60 92D25 34K14 34K25 PDF BibTeX XML Cite \textit{C. Huang} et al., Electron. J. Differ. Equ. 2020, Paper No. 61, 17 p. (2020; Zbl 07244080) Full Text: Link
Martsenyuk, Vasyl; Klos-Witkowska, Aleksandra; Sverstiuk, Andriy Stability investigation of biosensor model based on finite lattice difference equations. (English) Zbl 1444.92039 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 297-321 (2020). MSC: 92C47 39A36 39A33 39A28 PDF BibTeX XML Cite \textit{V. Martsenyuk} et al., Springer Proc. Math. Stat. 312, 297--321 (2020; Zbl 1444.92039) Full Text: DOI
Ivanov, Anatoli F. Global asymptotic stability in a non-autonomous difference equation. (English) Zbl 1443.39009 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 231-250 (2020). MSC: 39A30 37E10 PDF BibTeX XML Cite \textit{A. F. Ivanov}, Springer Proc. Math. Stat. 312, 231--250 (2020; Zbl 1443.39009) Full Text: DOI
Poláčik, Peter Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on \(\mathbb{R}\). (English) Zbl 1450.35002 Memoirs of the American Mathematical Society 1278. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4112-8/pbk; 978-1-4704-5806-5/ebook). v, 87 p. (2020). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35-02 35K15 35B40 35B35 35B05 35K57 PDF BibTeX XML Cite \textit{P. Poláčik}, Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on \(\mathbb{R}\). Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1450.35002) Full Text: DOI
Lei, Chengxia; Zhou, Jialin Long-time dynamics of a reaction-diffusion system with negative feedback and inhibition. (English) Zbl 1444.35097 Appl. Math. Lett. 107, Article ID 106475, 7 p. (2020). MSC: 35K51 35B40 35B45 35K57 35Q92 92D30 92E20 PDF BibTeX XML Cite \textit{C. Lei} and \textit{J. Zhou}, Appl. Math. Lett. 107, Article ID 106475, 7 p. (2020; Zbl 1444.35097) Full Text: DOI
Tripathi, Jai Prakash Almost periodic solution and global attractivity for a density dependent predator-prey system with mutual interference and Crowley-Martin response function. (English) Zbl 1437.92105 Differ. Equ. Dyn. Syst. 28, No. 1, 19-37 (2020). MSC: 92D25 34C27 PDF BibTeX XML Cite \textit{J. P. Tripathi}, Differ. Equ. Dyn. Syst. 28, No. 1, 19--37 (2020; Zbl 1437.92105) Full Text: DOI
Cai, Min; Yan, Shuling; Du, Zengji Positive periodic solutions of an eco-epidemic model with Crowley-Martin type functional response and disease in the prey. (English) Zbl 1437.34056 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 56, 20 p. (2020). MSC: 34C60 92D25 92D30 34C25 37C60 47N20 PDF BibTeX XML Cite \textit{M. Cai} et al., Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 56, 20 p. (2020; Zbl 1437.34056) Full Text: DOI
Touaoula, Tarik Mohammed Global dynamics for a class of reaction-diffusion equations with distributed delay and Neumann condition. (English) Zbl 1439.35512 Commun. Pure Appl. Anal. 19, No. 5, 2473-2490 (2020). MSC: 35R10 35B40 35Q92 PDF BibTeX XML Cite \textit{T. M. Touaoula}, Commun. Pure Appl. Anal. 19, No. 5, 2473--2490 (2020; Zbl 1439.35512) Full Text: DOI
Bai, Dingyong; Yu, Jianshe; Fan, Meng; Kang, Yun Dynamics for a non-autonomous predator-prey system with generalist predator. (English) Zbl 1443.92148 J. Math. Anal. Appl. 485, No. 2, Article ID 123820, 31 p. (2020). Reviewer: Ábel Garab (Szeged) MSC: 92D25 34D23 34C11 34C25 PDF BibTeX XML Cite \textit{D. Bai} et al., J. Math. Anal. Appl. 485, No. 2, Article ID 123820, 31 p. (2020; Zbl 1443.92148) Full Text: DOI
Yang, Hong; Wei, Junjie Dynamics of spatially heterogeneous viral model with time delay. (English) Zbl 1430.35141 Commun. Pure Appl. Anal. 19, No. 1, 85-102 (2020). Reviewer: Christian Stinner (Darmstadt) MSC: 35K58 35B40 35Q92 92D30 PDF BibTeX XML Cite \textit{H. Yang} and \textit{J. Wei}, Commun. Pure Appl. Anal. 19, No. 1, 85--102 (2020; Zbl 1430.35141) Full Text: DOI
Wang, Xiaoyan; Yang, Junyuan; Luo, Xiaofeng Asymptotical profiles of a viral infection model with multi-target cells and spatial diffusion. (English) Zbl 1442.92183 Comput. Math. Appl. 77, No. 2, 389-406 (2019). MSC: 92D30 92C60 35Q92 PDF BibTeX XML Cite \textit{X. Wang} et al., Comput. Math. Appl. 77, No. 2, 389--406 (2019; Zbl 1442.92183) Full Text: DOI
Ahmadjan, Muhammadhaji Dynamics of a ratio-dependent Lotka-Volterra cooperative system with delays. (Chinese. English summary) Zbl 1449.34283 Math. Pract. Theory 49, No. 22, 316-320 (2019). MSC: 34K60 34K13 34K20 92D25 37C60 34K25 PDF BibTeX XML Cite \textit{M. Ahmadjan}, Math. Pract. Theory 49, No. 22, 316--320 (2019; Zbl 1449.34283)
Yu, Xiangqin; Chen, Fengde; Lai, Liyun Dynamic behaviors of May type cooperative system with Michaelis-Menten type harvesting. (English) Zbl 1449.34172 Ann. Appl. Math. 35, No. 4, 374-391 (2019). MSC: 34C60 34D23 34D45 92D25 34C05 34D05 PDF BibTeX XML Cite \textit{X. Yu} et al., Ann. Appl. Math. 35, No. 4, 374--391 (2019; Zbl 1449.34172)
Qian, Chuanxi; Smith, Justin On existence and global attractivity of periodic solutions of nonlinear delay differential equations. (English) Zbl 07191610 Opusc. Math. 39, No. 6, 839-862 (2019). MSC: 34K13 34K20 34K25 PDF BibTeX XML Cite \textit{C. Qian} and \textit{J. Smith}, Opusc. Math. 39, No. 6, 839--862 (2019; Zbl 07191610) Full Text: DOI
Fu, Yingjie; Lan, Guijie; Zhang, Shuwen; Wei, Chunjin Dynamics of a stochastic predator-prey model with pulse input in a polluted environment. (Chinese. English summary) Zbl 1449.34131 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 674-688 (2019). MSC: 34C60 60H10 92D25 34F05 34C11 34C25 34D05 PDF BibTeX XML Cite \textit{Y. Fu} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 674--688 (2019; Zbl 1449.34131)
Chen, Shanshan; Shi, Junping Threshold dynamics of a diffusive nonlocal phytoplankton model with age structure. (English) Zbl 1429.35124 Nonlinear Anal., Real World Appl. 50, 55-66 (2019). MSC: 35K57 92D25 35B32 35R10 35Q92 35B40 PDF BibTeX XML Cite \textit{S. Chen} and \textit{J. Shi}, Nonlinear Anal., Real World Appl. 50, 55--66 (2019; Zbl 1429.35124) Full Text: DOI
Yang, Junyuan; Wang, Xiaoyan Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion. (English) Zbl 1428.35633 Appl. Math. Comput. 360, 236-254 (2019). MSC: 35Q92 92C60 92D30 35K57 PDF BibTeX XML Cite \textit{J. Yang} and \textit{X. Wang}, Appl. Math. Comput. 360, 236--254 (2019; Zbl 1428.35633) Full Text: DOI
Yue, Qin Stability property of the prey free equilibrium point. (English) Zbl 1430.34062 Open Math. 17, 646-652 (2019). MSC: 34C60 34D23 34C05 34D20 92D25 PDF BibTeX XML Cite \textit{Q. Yue}, Open Math. 17, 646--652 (2019; Zbl 1430.34062) Full Text: DOI
Tyagi, Swati; Abbas, Syed; Pinto, Manuel Global exponential stability in Lagrange sense for periodic neural networks with various activation functions and time-varying delays. (English) Zbl 1426.93275 Appl. Math. 46, No. 2, 229-252 (2019). MSC: 93D20 93C15 34D23 PDF BibTeX XML Cite \textit{S. Tyagi} et al., Appl. Math. 46, No. 2, 229--252 (2019; Zbl 1426.93275) Full Text: DOI
Ahmadjan, Muhammadhaji On the existence and global attractivity of positive periodic solution for a cooperative system with nonlinear diffusion and delays. (On the existence and global attractivity of positive perioic solution for a cooperative system with nonlinear diffusion and delays.) (Chinese. English summary) Zbl 1438.34237 J. Xinjiang Univ., Nat. Sci. 36, No. 1, 1-10 (2019). MSC: 34K13 92D25 34K20 34K60 PDF BibTeX XML Cite \textit{M. Ahmadjan}, J. Xinjiang Univ., Nat. Sci. 36, No. 1, 1--10 (2019; Zbl 1438.34237) Full Text: DOI
Su, Qianqian Dynamical behavior of a discrete Leslie-Gower-type food chain model. (Chinese. English summary) Zbl 1449.37059 J. Math., Wuhan Univ. 39, No. 1, 53-59 (2019). MSC: 37N25 39A60 92D40 PDF BibTeX XML Cite \textit{Q. Su}, J. Math., Wuhan Univ. 39, No. 1, 53--59 (2019; Zbl 1449.37059) Full Text: DOI
Yang, Hong Global attractivity of a degenerate reaction diffusion in-host viral model with general incidence terms. (Chinese. English summary) Zbl 1438.35065 Appl. Math., Ser. A (Chin. Ed.) 34, No. 1, 107-113 (2019). MSC: 35B41 35K57 92D30 PDF BibTeX XML Cite \textit{H. Yang}, Appl. Math., Ser. A (Chin. Ed.) 34, No. 1, 107--113 (2019; Zbl 1438.35065)
Poetzsche, Christian Numerical dynamics of integrodifference equations: global attractivity in a \(C^0\)-setting. (English) Zbl 1429.45004 SIAM J. Numer. Anal. 57, No. 5, 2121-2141 (2019). Reviewer: Alexander N. Tynda (Penza) MSC: 45J99 65R20 45G15 65P40 37C55 PDF BibTeX XML Cite \textit{C. Poetzsche}, SIAM J. Numer. Anal. 57, No. 5, 2121--2141 (2019; Zbl 1429.45004) Full Text: DOI
Dekkar, Imane; Touafek, Nouressadat; Din, Qamar On the global dynamics of a rational difference equation with periodic coefficients. (English) Zbl 1417.39057 J. Appl. Math. Comput. 60, No. 1-2, 567-588 (2019). MSC: 39A30 39A22 PDF BibTeX XML Cite \textit{I. Dekkar} et al., J. Appl. Math. Comput. 60, No. 1--2, 567--588 (2019; Zbl 1417.39057) Full Text: DOI
Fan, Dejun; Yi, Xiaoyu; Xia, Ling; Lv, Jingliang Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. (English) Zbl 1418.60030 Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2901-2922 (2019). MSC: 60G15 60H10 37A50 PDF BibTeX XML Cite \textit{D. Fan} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2901--2922 (2019; Zbl 1418.60030) Full Text: DOI
Wang, Xiunan; Zou, Xingfu Modeling the potential role of engineered symbiotic bacteria in malaria control. (English) Zbl 1417.92096 Bull. Math. Biol. 81, No. 7, 2569-2595 (2019). MSC: 92C60 92D30 PDF BibTeX XML Cite \textit{X. Wang} and \textit{X. Zou}, Bull. Math. Biol. 81, No. 7, 2569--2595 (2019; Zbl 1417.92096) Full Text: DOI
Qi, Haokun; Meng, Xinzhu; Feng, Tao Dynamics analysis of a stochastic non-autonomous one-predator-two-prey system with Beddington-DeAngelis functional response and impulsive perturbations. (English) Zbl 07072647 Adv. Difference Equ. 2019, Paper No. 235, 35 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{H. Qi} et al., Adv. Difference Equ. 2019, Paper No. 235, 35 p. (2019; Zbl 07072647) Full Text: DOI
Wan, Haiyun; Jiang, Haining Dynamical behaviors of a predator-prey system with prey impulsive diffusion and dispersal delay between two patches. (English) Zbl 07057009 Adv. Difference Equ. 2019, Paper No. 191, 11 p. (2019). MSC: 34A37 34C55 34C25 34D23 PDF BibTeX XML Cite \textit{H. Wan} and \textit{H. Jiang}, Adv. Difference Equ. 2019, Paper No. 191, 11 p. (2019; Zbl 07057009) Full Text: DOI
Faria, Teresa; Oliveira, José J. A note on global attractivity of the periodic solution for a model of hematopoiesis. (English) Zbl 1416.34067 Appl. Math. Lett. 94, 1-7 (2019). Reviewer: Ábel Garab (Szeged) MSC: 34K60 34K25 34K13 92C37 PDF BibTeX XML Cite \textit{T. Faria} and \textit{J. J. Oliveira}, Appl. Math. Lett. 94, 1--7 (2019; Zbl 1416.34067) Full Text: DOI
Braverman, Elena; Ilmer, Ilia On the interplay of harvesting and various diffusion strategies for spatially heterogeneous populations. (English) Zbl 1411.92244 J. Theor. Biol. 466, 106-118 (2019). MSC: 92D25 92D40 35Q92 PDF BibTeX XML Cite \textit{E. Braverman} and \textit{I. Ilmer}, J. Theor. Biol. 466, 106--118 (2019; Zbl 1411.92244) Full Text: DOI
Kuniya, Toshikazu Global behavior of a multi-group SIR epidemic model with age structure and an application to the chlamydia epidemic in Japan. (English) Zbl 1415.35264 SIAM J. Appl. Math. 79, No. 1, 321-340 (2019). MSC: 35Q92 37N25 92D30 PDF BibTeX XML Cite \textit{T. Kuniya}, SIAM J. Appl. Math. 79, No. 1, 321--340 (2019; Zbl 1415.35264) Full Text: DOI
Chen, Baoguo The influence of commensalism on a Lotka-Volterra commensal symbiosis model with Michaelis-Menten type harvesting. (English) Zbl 07020818 Adv. Difference Equ. 2019, Paper No. 43, 14 p. (2019). MSC: 34C25 92D25 34D20 34D40 PDF BibTeX XML Cite \textit{B. Chen}, Adv. Difference Equ. 2019, Paper No. 43, 14 p. (2019; Zbl 07020818) Full Text: DOI
Zhuo, Xianglai Global attractability and permanence for a new stage-structured delay impulsive ecosystem. (English) Zbl 07303357 J. Appl. Anal. Comput. 8, No. 2, 457-470 (2018). MSC: 34K60 34K45 92D40 34K25 34K13 PDF BibTeX XML Cite \textit{X. Zhuo}, J. Appl. Anal. Comput. 8, No. 2, 457--470 (2018; Zbl 07303357) Full Text: DOI
Gao, Shujing; Yu, Dan; Meng, Xinzhu; Zhang, Fumin Global dynamics of a stage-structured Huanglongbing model with time delay. (English) Zbl 1442.92164 Chaos Solitons Fractals 117, 60-67 (2018). MSC: 92D30 92C80 34K20 34D45 PDF BibTeX XML Cite \textit{S. Gao} et al., Chaos Solitons Fractals 117, 60--67 (2018; Zbl 1442.92164) Full Text: DOI
Xue, Yalong; Xie, Xiangdong; Lin, Qifa; Chen, Fengde Global attractivity of a discrete commensalism system with infinite delays. (English) Zbl 1449.39026 J. Biomath. 33, No. 2, 137-146 (2018). MSC: 39A60 92D25 39A30 PDF BibTeX XML Cite \textit{Y. Xue} et al., J. Biomath. 33, No. 2, 137--146 (2018; Zbl 1449.39026)
Su, Qianqian Extinction of a class of nonautonomous discrete Schoener’s competition model. (Chinese. English summary) Zbl 1424.39044 Math. Pract. Theory 48, No. 12, 296-302 (2018). MSC: 39A60 37N25 92D25 PDF BibTeX XML Cite \textit{Q. Su}, Math. Pract. Theory 48, No. 12, 296--302 (2018; Zbl 1424.39044)
Wang, Lei; Zhang, Yong; Shu, Yonglu Dynamical behaviors of a new high order chaos model and its numerical simulation. (Chinese. English summary) Zbl 1424.37042 Math. Pract. Theory 48, No. 12, 220-226 (2018). MSC: 37M05 37D45 37C75 PDF BibTeX XML Cite \textit{L. Wang} et al., Math. Pract. Theory 48, No. 12, 220--226 (2018; Zbl 1424.37042)
Li, Jia; Ma, Shufang Dynamical behaviors of a discrete Holling type II predator-prey model with impulsive control strategy at different fixed times. (English) Zbl 1438.39031 J. Nat. Sci. Heilongjiang Univ. 35, No. 3, 285-294 (2018). MSC: 39A60 37N25 92D25 PDF BibTeX XML Cite \textit{J. Li} and \textit{S. Ma}, J. Nat. Sci. Heilongjiang Univ. 35, No. 3, 285--294 (2018; Zbl 1438.39031) Full Text: DOI
Liu, Yu; Xie, Xiangdong; Guan, Xinyu; Chen, Fengde Dynamic behaviors of a non-selective harvesting Lotka-Volterra predator-prey model incorporating partial closure for the populations. (Chinese. English summary) Zbl 1424.34151 J. Biomath. 33, No. 1, 91-97 (2018). MSC: 34C60 34D20 92D25 34D05 34C05 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Biomath. 33, No. 1, 91--97 (2018; Zbl 1424.34151)
Al-Jararha, M. Global attractivity in a non-monotone age-structured model with age-dependent diffusion and death rates. (English) Zbl 1448.37115 Adv. Difference Equ. 2018, Paper No. 419, 12 p. (2018). MSC: 37N25 34K10 35K55 35B35 92D25 PDF BibTeX XML Cite \textit{M. Al-Jararha}, Adv. Difference Equ. 2018, Paper No. 419, 12 p. (2018; Zbl 1448.37115) Full Text: DOI
Liu, Xiongding; Li, Tao; Tian, Mi Rumor spreading of a SEIR model in complex social networks with hesitating mechanism. (English) Zbl 1448.92318 Adv. Difference Equ. 2018, Paper No. 391, 24 p. (2018). MSC: 92D30 91D30 91D10 PDF BibTeX XML Cite \textit{X. Liu} et al., Adv. Difference Equ. 2018, Paper No. 391, 24 p. (2018; Zbl 1448.92318) Full Text: DOI
Bertrand, Elliott; Kulenović, M. R. S. Global dynamic scenarios for competitive maps in the plane. (English) Zbl 1448.39025 Adv. Difference Equ. 2018, Paper No. 291, 28 p. (2018). MSC: 39A30 39A20 39A23 PDF BibTeX XML Cite \textit{E. Bertrand} and \textit{M. R. S. Kulenović}, Adv. Difference Equ. 2018, Paper No. 291, 28 p. (2018; Zbl 1448.39025) Full Text: DOI
Yuan, Yueding; Chen, Haibo Global dynamics for a class of non-monotone time-delayed reaction-diffusion equations. (English) Zbl 1445.35216 Adv. Difference Equ. 2018, Paper No. 55, 16 p. (2018). MSC: 35K57 37L15 PDF BibTeX XML Cite \textit{Y. Yuan} and \textit{H. Chen}, Adv. Difference Equ. 2018, Paper No. 55, 16 p. (2018; Zbl 1445.35216) Full Text: DOI
Kuniya, Toshikazu; Inaba, Hisashi; Yang, Junyuan Global behavior of SIS epidemic models with age structure and spatial heterogeneity. (English) Zbl 1406.35433 Japan J. Ind. Appl. Math. 35, No. 2, 669-706 (2018). MSC: 35Q92 37N25 46N60 92D30 PDF BibTeX XML Cite \textit{T. Kuniya} et al., Japan J. Ind. Appl. Math. 35, No. 2, 669--706 (2018; Zbl 1406.35433) Full Text: DOI
Chen, Shanshan; Wei, Junjie; Zhang, Jianhui Dynamics of a diffusive predator-prey model: the effect of conversion rate. (English) Zbl 1401.35176 J. Dyn. Differ. Equations 30, No. 4, 1683-1701 (2018). Reviewer: E. Ahmed (Mansoura) MSC: 35K57 92D25 35K51 35K58 35Q92 PDF BibTeX XML Cite \textit{S. Chen} et al., J. Dyn. Differ. Equations 30, No. 4, 1683--1701 (2018; Zbl 1401.35176) Full Text: DOI arXiv
Chen, Dongxiao; Wang, Dongshu Almost periodic dynamics of delayed prey-predator model with discontinuous harvesting policies and Hassell-Varley type functional response. (English) Zbl 1400.92428 Int. J. Biomath. 11, No. 7, Article ID 1850083, 36 p. (2018). MSC: 92D25 34C25 PDF BibTeX XML Cite \textit{D. Chen} and \textit{D. Wang}, Int. J. Biomath. 11, No. 7, Article ID 1850083, 36 p. (2018; Zbl 1400.92428) Full Text: DOI
Zhang, Lei; Ye, Xiaojun; Qiu, Huahai Global attractivity of a predator-prey system with Holling II functional response and mutual interference. (Chinese. English summary) Zbl 1413.34190 Math. Pract. Theory 48, No. 8, 265-272 (2018). MSC: 34C60 92D25 34D20 34C05 34D05 PDF BibTeX XML Cite \textit{L. Zhang} et al., Math. Pract. Theory 48, No. 8, 265--272 (2018; Zbl 1413.34190)
Ahmadjan, Muhammadhaji Dynamics of a periodic Lotka-Volterra cooperative system with delays and feedback controls. (Chinese. English summary) Zbl 1413.34268 Math. Pract. Theory 48, No. 5, 276-285 (2018). MSC: 34K60 34K13 34K35 92D25 47N20 34K25 PDF BibTeX XML Cite \textit{M. Ahmadjan}, Math. Pract. Theory 48, No. 5, 276--285 (2018; Zbl 1413.34268)
Wang, Libo; Xu, Guigui; Lei, Xuehong Almost periodic solution of a non-selective harvesting predator-prey model with Hassell-Varley type functional response and deviating arguments. (English) Zbl 1413.34282 Math. Appl. 31, No. 1, 95-107 (2018). MSC: 34K60 34K14 92D25 34K20 34K45 PDF BibTeX XML Cite \textit{L. Wang} et al., Math. Appl. 31, No. 1, 95--107 (2018; Zbl 1413.34282)
Pu, Xiaoqin On the positive periodic solution of stochastic competition Lotka-Volterra model. (Chinese. English summary) Zbl 1413.34155 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 3, 374-380 (2018). MSC: 34C25 34D45 60H10 34F05 PDF BibTeX XML Cite \textit{X. Pu}, J. Sichuan Norm. Univ., Nat. Sci. 41, No. 3, 374--380 (2018; Zbl 1413.34155) Full Text: DOI
Yang, Hong; Wei, Junjie Global behaviours of an in-host viral model with general incidence terms. (English) Zbl 1404.35466 Appl. Anal. 97, No. 14, 2431-2449 (2018). MSC: 35Q92 35B40 35K57 92D25 PDF BibTeX XML Cite \textit{H. Yang} and \textit{J. Wei}, Appl. Anal. 97, No. 14, 2431--2449 (2018; Zbl 1404.35466) Full Text: DOI
Yang, Gang Dynamical behaviors on a delay differential neoclassical growth model with patch structure. (English) Zbl 1397.34149 Math. Methods Appl. Sci. 41, No. 10, 3856-3867 (2018). MSC: 34K60 34K13 34K25 92D25 PDF BibTeX XML Cite \textit{G. Yang}, Math. Methods Appl. Sci. 41, No. 10, 3856--3867 (2018; Zbl 1397.34149) Full Text: DOI
Wang, Pan; Li, Bing; Li, Yongkun Asymptotic behavior of a stochastic two-species competition system with impulsive effects. (English) Zbl 1401.92168 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 5, 427-438 (2018). MSC: 92D25 34A37 34F05 60H10 93E15 PDF BibTeX XML Cite \textit{P. Wang} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 5, 427--438 (2018; Zbl 1401.92168) Full Text: DOI
Mathur, Kunwer Singh; Dhar, Joydip Stability and permanence of an eco-epidemiological SEIN model with impulsive biological control. (English) Zbl 1397.92659 Comput. Appl. Math. 37, No. 1, 675-692 (2018). MSC: 92D30 92D40 34D23 92D25 34C25 34D45 PDF BibTeX XML Cite \textit{K. S. Mathur} and \textit{J. Dhar}, Comput. Appl. Math. 37, No. 1, 675--692 (2018; Zbl 1397.92659) Full Text: DOI
Jafar, Amer; Saleh, M. Dynamics of nonlinear difference equation \(x_{n+1}=\frac{\beta x_{n}+\gamma x_{n-k}}{A+Bx_{n}+C x_{n-k}}\). (English) Zbl 1395.39007 J. Appl. Math. Comput. 57, No. 1-2, 493-522 (2018). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A30 39A22 39A23 PDF BibTeX XML Cite \textit{A. Jafar} and \textit{M. Saleh}, J. Appl. Math. Comput. 57, No. 1--2, 493--522 (2018; Zbl 1395.39007) Full Text: DOI
Lu, Chun; Chen, Jian; Fan, Xingkui; Zhang, Lei Dynamics and simulations of a stochastic predator-prey model with infinite delay and impulsive perturbations. (English) Zbl 1395.92131 J. Appl. Math. Comput. 57, No. 1-2, 437-465 (2018). MSC: 92D25 60H40 34K45 60H10 PDF BibTeX XML Cite \textit{C. Lu} et al., J. Appl. Math. Comput. 57, No. 1--2, 437--465 (2018; Zbl 1395.92131) Full Text: DOI
Wang, Xiunan; Zhao, Xiao-Qiang A climate-based malaria model with the use of bed nets. (English) Zbl 1392.34059 J. Math. Biol. 77, No. 1, 1-25 (2018). MSC: 34C60 34D23 92D30 34D05 34C05 PDF BibTeX XML Cite \textit{X. Wang} and \textit{X.-Q. Zhao}, J. Math. Biol. 77, No. 1, 1--25 (2018; Zbl 1392.34059) Full Text: DOI
Qian, Chuanxi; Smith, Justin Existence and global attractivity of periodic solutions in a higher order difference equation. (English) Zbl 1424.39036 Arch. Math., Brno 54, No. 2, 91-110 (2018). MSC: 39A23 39A30 39A60 PDF BibTeX XML Cite \textit{C. Qian} and \textit{J. Smith}, Arch. Math., Brno 54, No. 2, 91--110 (2018; Zbl 1424.39036) Full Text: DOI
Yao, Luogen Global attractivity of a delayed Nicholson-type system involving nonlinear density-dependent mortality terms. (English) Zbl 1388.34077 Math. Methods Appl. Sci. 41, No. 6, 2379-2391 (2018). MSC: 34K60 34K20 34K21 34K25 92D25 PDF BibTeX XML Cite \textit{L. Yao}, Math. Methods Appl. Sci. 41, No. 6, 2379--2391 (2018; Zbl 1388.34077) Full Text: DOI
Xiao, Songlin Delay effect in the Lasota-Wazewska model with multiple time-varying delays. (English) Zbl 1380.34123 Int. J. Biomath. 11, No. 1, Article ID 1850013, 11 p. (2018). MSC: 34K60 34K25 34K20 92C37 PDF BibTeX XML Cite \textit{S. Xiao}, Int. J. Biomath. 11, No. 1, Article ID 1850013, 11 p. (2018; Zbl 1380.34123) Full Text: DOI
Hu, Wenjie; Duan, Yueliang; Zhou, Yinggao Dirichlet problem of a delay differential equation with spatial non-locality on a half plane. (English) Zbl 06808257 Nonlinear Anal., Real World Appl. 39, 300-320 (2018). MSC: 35 34 PDF BibTeX XML Cite \textit{W. Hu} et al., Nonlinear Anal., Real World Appl. 39, 300--320 (2018; Zbl 06808257) Full Text: DOI
Bohner, Martin; Dannan, Fozi M.; Streipert, Sabrina A nonautonomous Beverton-Holt equation of higher order. (English) Zbl 1375.39025 J. Math. Anal. Appl. 457, No. 1, 114-133 (2018). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{M. Bohner} et al., J. Math. Anal. Appl. 457, No. 1, 114--133 (2018; Zbl 1375.39025) Full Text: DOI
Zhao, Dianli; Yuan, Sanling Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation. (English) Zbl 07257377 Commun. Nonlinear Sci. Numer. Simul. 46, 62-73 (2017). MSC: 82 92 PDF BibTeX XML Cite \textit{D. Zhao} and \textit{S. Yuan}, Commun. Nonlinear Sci. Numer. Simul. 46, 62--73 (2017; Zbl 07257377) Full Text: DOI
Zhang, Hong; Li, Chunming; Sun, Hongquan Analysis of a delayed SIR model subject to multiple infectious stages and nonlinear incidence rate. (English) Zbl 1412.34181 J. Nonlinear Sci. Appl. 10, No. 11, 6071-6083 (2017). MSC: 34D23 34K20 92D30 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Nonlinear Sci. Appl. 10, No. 11, 6071--6083 (2017; Zbl 1412.34181) Full Text: DOI
Dekkar, Imane; Touafek, Nouressadat Existence and global attractivity of periodic solutions in a max-type system of difference equations. (English) Zbl 1424.39007 Turk. J. Math. 41, No. 2, 412-425 (2017). MSC: 39A10 40A05 PDF BibTeX XML Cite \textit{I. Dekkar} and \textit{N. Touafek}, Turk. J. Math. 41, No. 2, 412--425 (2017; Zbl 1424.39007) Full Text: DOI
Hu, Meng; Wang, Lili Extinction in a nonautonomous system of Volterra integrodifferential equations. (English) Zbl 1412.92261 J. Nonlinear Sci. Appl. 10, No. 8, 4441-4450 (2017). MSC: 92D25 45D05 PDF BibTeX XML Cite \textit{M. Hu} and \textit{L. Wang}, J. Nonlinear Sci. Appl. 10, No. 8, 4441--4450 (2017; Zbl 1412.92261) Full Text: DOI
Liu, Qin; Shao, Yuanfu; Zhou, Si; Wang, Zhen; Chen, Hairu Dynamical analysis of almost periodic solution for a multispecies predator-prey model with mutual interference and time delays. (English) Zbl 1444.37076 Adv. Difference Equ. 2017, Paper No. 393, 18 p. (2017). MSC: 37N25 92D25 34C27 PDF BibTeX XML Cite \textit{Q. Liu} et al., Adv. Difference Equ. 2017, Paper No. 393, 18 p. (2017; Zbl 1444.37076) Full Text: DOI
Guo, Shengliang; Hu, Yijun Asymptotic behavior and numerical simulations of a Lotka-Volterra mutualism system with white noises. (English) Zbl 1422.60095 Adv. Difference Equ. 2017, Paper No. 125, 19 p. (2017). MSC: 60H10 92D40 92D25 34F05 60H30 PDF BibTeX XML Cite \textit{S. Guo} and \textit{Y. Hu}, Adv. Difference Equ. 2017, Paper No. 125, 19 p. (2017; Zbl 1422.60095) Full Text: DOI
Zhang, Tongqian; Ma, Wanbiao; Meng, Xinzhu Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input. (English) Zbl 1422.92139 Adv. Difference Equ. 2017, Paper No. 115, 17 p. (2017). MSC: 92D25 92D40 34A37 34K45 34K20 PDF BibTeX XML Cite \textit{T. Zhang} et al., Adv. Difference Equ. 2017, Paper No. 115, 17 p. (2017; Zbl 1422.92139) Full Text: DOI
Chen, Baoguo Global attractivity of an integro-differential model of competition. (English) Zbl 1422.45012 Adv. Difference Equ. 2017, Paper No. 49, 13 p. (2017). MSC: 45M10 92D25 PDF BibTeX XML Cite \textit{B. Chen}, Adv. Difference Equ. 2017, Paper No. 49, 13 p. (2017; Zbl 1422.45012) Full Text: DOI
Xiang, Hong; Liu, Ying-Ping; Huo, Hai-Feng Stability of an SAIRS alcoholism model on scale-free networks. (English) Zbl 1400.92292 Physica A 473, 276-292 (2017). MSC: 92C50 34C60 34D23 PDF BibTeX XML Cite \textit{H. Xiang} et al., Physica A 473, 276--292 (2017; Zbl 1400.92292) Full Text: DOI
Jiang, Daqing; Zhang, Qiumei; Hayat, Tasawar; Alsaedi, Ahmed Periodic solution for a stochastic non-autonomous competitive Lotka-Volterra model in a polluted environment. (English) Zbl 1400.92503 Physica A 471, 276-287 (2017). MSC: 92D30 34D20 60J60 60H10 34C25 PDF BibTeX XML Cite \textit{D. Jiang} et al., Physica A 471, 276--287 (2017; Zbl 1400.92503) Full Text: DOI
Wei, Xiaodan; Liu, Lijun; Zhou, Wenshu Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate. (English) Zbl 1400.92557 Physica A 469, 789-798 (2017). MSC: 92D30 34F05 60J28 PDF BibTeX XML Cite \textit{X. Wei} et al., Physica A 469, 789--798 (2017; Zbl 1400.92557) Full Text: DOI
Ma, Manjun; Ou, Chunhua Existence, uniqueness, stability and bifurcation of periodic patterns for a seasonal single phytoplankton model with self-shading effect. (English) Zbl 1396.35037 J. Differ. Equations 263, No. 9, 5630-5655 (2017). MSC: 35K57 35B20 35Q92 92D25 PDF BibTeX XML Cite \textit{M. Ma} and \textit{C. Ou}, J. Differ. Equations 263, No. 9, 5630--5655 (2017; Zbl 1396.35037) Full Text: DOI
Caetano, Diogo; Faria, Teresa Stability and attractivity for Nicholson systems with time-dependent delays. (English) Zbl 1413.34270 Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 63, 19 p. (2017). MSC: 34K60 34K21 34K20 34K25 92D25 PDF BibTeX XML Cite \textit{D. Caetano} and \textit{T. Faria}, Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 63, 19 p. (2017; Zbl 1413.34270) Full Text: DOI
Xiong, Wanmin Delay effect in the Nicholson’s blowflies model with a nonlinear density-dependent mortality term. (English) Zbl 1413.34285 Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 20, 11 p. (2017). MSC: 34K60 34K25 34K21 PDF BibTeX XML Cite \textit{W. Xiong}, Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 20, 11 p. (2017; Zbl 1413.34285) Full Text: DOI
Pu, Liqiong; Xie, Xiangdong Dynamic behaviours of an autonomous stage-structured competitive systems with toxic effect. (English) Zbl 1399.34139 Ann. Appl. Math. 33, No. 4, 400-416 (2017). MSC: 34C60 34D45 92D25 34D23 34D05 PDF BibTeX XML Cite \textit{L. Pu} and \textit{X. Xie}, Ann. Appl. Math. 33, No. 4, 400--416 (2017; Zbl 1399.34139)
Wang, Wen; Liu, Shutang; Tian, Dadong; Zhao, Qiuyue Permanence and extinction of a nonautonomous impulsive plankton model with help. (English) Zbl 1383.92094 Math. Methods Appl. Sci. 40, No. 18, 7175-7184 (2017). MSC: 92D40 92D25 PDF BibTeX XML Cite \textit{W. Wang} et al., Math. Methods Appl. Sci. 40, No. 18, 7175--7184 (2017; Zbl 1383.92094) Full Text: DOI
Cheng, Yongling; Wang, Lili Global attractivity of Lotka-Volterra competitive system with feedback controls. (Chinese. English summary) Zbl 1389.34254 J. North Univ. China, Nat. Sci. 38, No. 4, 414-419 (2017). MSC: 34K60 92D25 34K35 34K25 93B52 PDF BibTeX XML Cite \textit{Y. Cheng} and \textit{L. Wang}, J. North Univ. China, Nat. Sci. 38, No. 4, 414--419 (2017; Zbl 1389.34254) Full Text: DOI
Fu, Jinbo; Chen, Lansun Positive periodic solution of multiple species comptition system with ecological environment and feedback controls. (Chinese. English summary) Zbl 1389.34258 Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 3, 553-561 (2017). MSC: 34K60 92D25 92D40 93B52 47N20 34K13 34K20 PDF BibTeX XML Cite \textit{J. Fu} and \textit{L. Chen}, Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 3, 553--561 (2017; Zbl 1389.34258)
Zhang, Tianwei; Liao, Yongzhi Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay. (English) Zbl 1424.34295 Kybernetika 53, No. 4, 612-629 (2017). MSC: 34K60 92D25 34K14 47N20 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Liao}, Kybernetika 53, No. 4, 612--629 (2017; Zbl 1424.34295) Full Text: DOI
Xu, Yanli New result on the global attractivity of a delay differential neoclassical growth model. (English) Zbl 1374.34140 Nonlinear Dyn. 89, No. 1, 281-288 (2017). MSC: 34C25 34K13 34K25 PDF BibTeX XML Cite \textit{Y. Xu}, Nonlinear Dyn. 89, No. 1, 281--288 (2017; Zbl 1374.34140) Full Text: DOI
Wang, Shuangming Dynamical analysis of a class of periodic epidemic model with delay. (Chinese. English summary) Zbl 1389.92056 J. Shandong Univ., Nat. Sci. 52, No. 1, 81-87, 97 (2017). MSC: 92D30 35B10 35K51 35Q92 PDF BibTeX XML Cite \textit{S. Wang}, J. Shandong Univ., Nat. Sci. 52, No. 1, 81--87, 97 (2017; Zbl 1389.92056) Full Text: DOI
Wang, Zhanshan; Kang, Yunyun; Niu, Haisha A class of neural networks for solving optimization problems with global attractivity. (Chinese. English summary) Zbl 1389.92008 J. Northeast. Univ., Nat. Sci. 38, No. 2, 153-157 (2017). MSC: 92B20 90C30 PDF BibTeX XML Cite \textit{Z. Wang} et al., J. Northeast. Univ., Nat. Sci. 38, No. 2, 153--157 (2017; Zbl 1389.92008) Full Text: DOI
Chen, Xiaoying; Shi, Chunling Permanence and global attractivity of a discrete Nicholson’s blowflies model with delay. (English) Zbl 1399.39031 J. Math. Res. Appl. 37, No. 2, 233-241 (2017). MSC: 39A60 92D25 PDF BibTeX XML Cite \textit{X. Chen} and \textit{C. Shi}, J. Math. Res. Appl. 37, No. 2, 233--241 (2017; Zbl 1399.39031) Full Text: DOI
Xu, Min; Du, Dongqing Existence and global attractivity of a positive periodic solution to a neural networks model with neutral delays. (English) Zbl 1389.34221 J. Jiangsu Norm. Univ., Nat. Sci. 35, No. 1, 63-67 (2017). MSC: 34K13 34K20 34K40 92B20 47N20 PDF BibTeX XML Cite \textit{M. Xu} and \textit{D. Du}, J. Jiangsu Norm. Univ., Nat. Sci. 35, No. 1, 63--67 (2017; Zbl 1389.34221) Full Text: DOI
Bajo, Ignacio; Ruiz-Herrera, Alfonso A quantitative approach to the stabilizing role of dispersal in metapopulations. (English) Zbl 1375.92045 Math. Biosci. 290, 49-55 (2017). MSC: 92D25 PDF BibTeX XML Cite \textit{I. Bajo} and \textit{A. Ruiz-Herrera}, Math. Biosci. 290, 49--55 (2017; Zbl 1375.92045) Full Text: DOI
Jia, Renwei; Long, Zhiwen; Yang, Mingquan Delay-dependent criteria on the global attractivity of Nicholson’s blowflies model with patch structure. (English) Zbl 1410.34251 Math. Methods Appl. Sci. 40, No. 11, 4222-4232 (2017). MSC: 34K60 34K13 34K25 34K21 PDF BibTeX XML Cite \textit{R. Jia} et al., Math. Methods Appl. Sci. 40, No. 11, 4222--4232 (2017; Zbl 1410.34251) Full Text: DOI
Weng, Peixuan; Liu, Li Globally asymptotic stability of a delayed integro-differential equation with nonlocal diffusion. (English) Zbl 1373.45009 Can. Math. Bull. 60, No. 2, 436-448 (2017). Reviewer: Neville Ford (Chester) MSC: 45J05 45M05 45G10 45M10 92D25 PDF BibTeX XML Cite \textit{P. Weng} and \textit{L. Liu}, Can. Math. Bull. 60, No. 2, 436--448 (2017; Zbl 1373.45009) Full Text: DOI
Wang, Xiunan; Zhao, Xiao-Qiang A malaria transmission model with temperature-dependent incubation period. (English) Zbl 1372.92113 Bull. Math. Biol. 79, No. 5, 1155-1182 (2017). MSC: 92D30 PDF BibTeX XML Cite \textit{X. Wang} and \textit{X.-Q. Zhao}, Bull. Math. Biol. 79, No. 5, 1155--1182 (2017; Zbl 1372.92113) Full Text: DOI
Jovanović, Miljana; Krstić, Marija Extinction in stochastic predator-prey population model with Allee effect on prey. (English) Zbl 1366.92106 Discrete Contin. Dyn. Syst., Ser. B 22, No. 7, 2651-2667 (2017). MSC: 92D25 60H30 60H10 60H35 PDF BibTeX XML Cite \textit{M. Jovanović} and \textit{M. Krstić}, Discrete Contin. Dyn. Syst., Ser. B 22, No. 7, 2651--2667 (2017; Zbl 1366.92106) Full Text: DOI
Fan, Xiaolin; Teng, Zhidong; Muhammadhaji, Ahmadjan Global dynamics of a stochastic ratio-dependent predator-prey system. (English) Zbl 1366.37151 Asian-Eur. J. Math. 10, No. 1, Article ID 1750002, 20 p. (2017). Reviewer: Sherzod N. Murodov (Tashkent) MSC: 37N25 60H10 93E03 92D25 34C60 PDF BibTeX XML Cite \textit{X. Fan} et al., Asian-Eur. J. Math. 10, No. 1, Article ID 1750002, 20 p. (2017; Zbl 1366.37151) Full Text: DOI
Li, Hong-Li; Zhang, Long; Teng, Zhidong; Jiang, Yao-Lin A periodic single species model with intermittent unilateral diffusion in two patches. (English) Zbl 1357.92063 J. Appl. Math. Comput. 53, No. 1-2, 223-244 (2017). MSC: 92D25 34D20 PDF BibTeX XML Cite \textit{H.-L. Li} et al., J. Appl. Math. Comput. 53, No. 1--2, 223--244 (2017; Zbl 1357.92063) Full Text: DOI
Zhao, Jiandong; Chen, Zhenzhen Average conditions for permanence and extinction in nonautonomous single-species Kolmogorov systems. (English) Zbl 1358.34060 Int. J. Biomath. 10, No. 2, Article ID 1750028, 15 p. (2017). MSC: 34C60 37C60 34D05 34C05 92D25 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{Z. Chen}, Int. J. Biomath. 10, No. 2, Article ID 1750028, 15 p. (2017; Zbl 1358.34060) Full Text: DOI
Duan, Lian; Huang, Chuangxia Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. (English) Zbl 1359.34091 Math. Methods Appl. Sci. 40, No. 3, 814-822 (2017). MSC: 34K60 34K14 34K20 34K38 PDF BibTeX XML Cite \textit{L. Duan} and \textit{C. Huang}, Math. Methods Appl. Sci. 40, No. 3, 814--822 (2017; Zbl 1359.34091) Full Text: DOI