×

Scalar 1-loop Feynman integrals as meromorphic functions in space-time dimension \(d\). (English) Zbl 1411.81094

Summary: The long-standing problem of representing the general massive one-loop Feynman integral as a meromorphic function of the space-time dimension \(d\) has been solved for the basis of scalar one- to four-point functions with indices one. In 2003, the solution of difference equations in the space-time dimension allowed to determine the necessary classes of special functions: self-energies need ordinary logarithms and Gauss hypergeometric functions \({}_2F_1\), vertices need additionally Kampé de Fériet-Appell functions \(F_1\), and box integrals also Lauricella-Saran functions \(F_S\). In this study, alternative recursive Mellin-Barnes representations are used for the representation of \(n\)-point functions in terms of \((n - 1)\)-point functions. The approach enabled the first derivation of explicit solutions for the Feynman integrals at arbitrary kinematics. In this article, we scetch our new representations for the general massive vertex and box Feynman integrals and derive a numerical approach for the necessary Appell functions \(F_1\) and Saran functions \(F_S\) at arbitrary kinematical arguments.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
30D30 Meromorphic functions of one complex variable (general theory)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Davydychev, A. I., Phys. Lett. B, 263, 107-111 (1991)
[2] Fleischer, J.; Riemann, T., Phys. Rev. D, 83, Article 073004 pp. (2011)
[3] Gluza, J.; Kajda, K.; Riemann, T., Comput. Phys. Commun., 177, 879-893 (2007)
[4] Dubovyk, I.; Gluza, J.; Riemann, T.; Usovitsch, J., (PoS LL2016 (2016)), 034
[5] Kajda, K.; Dubovyk, I., Mathematica package AMBRE 2.2 (12 Sep 2015)
[6] I. Dubovyk, Mellin-Barnes representations for multiloop Feynman integrals with applications to 2-loop electroweak Z boson studies, Universität Hamburg, submitted for publication.; I. Dubovyk, Mellin-Barnes representations for multiloop Feynman integrals with applications to 2-loop electroweak Z boson studies, Universität Hamburg, submitted for publication.
[7] ’t Hooft, G.; Veltman, M., Nucl. Phys. B, 153, 365-401 (1979)
[8] Nierste, U.; Müller, D.; Böhm, M., Z. Phys. C, 57, 605-614 (1993)
[9] Passarino, G., Nucl. Phys. B, 619, 257-312 (2001)
[10] Tarasov, O., Nucl. Phys. Proc. Suppl., 89, 237 (2000)
[11] Fleischer, J.; Jegerlehner, F.; Tarasov, O., Nucl. Phys. B, 672, 303 (2003)
[12] Melrose, D. B., Nuovo Cimento, 40, 181-213 (1965)
[13] Phan, K. H.; Blümlein, J.; Riemann, T., Acta Phys. Pol. B, 48, 2313 (2017)
[14] Usovitsch, J.; Dubovyk, I.; Riemann, T., (PoS LL2018 (2018)), 046
[15] J. Usovitsch, I. Dubovyk, and T. Riemann, The MBnumerics project, section E.2 in [32]; J. Usovitsch, I. Dubovyk, and T. Riemann, The MBnumerics project, section E.2 in [32]
[16] Hahn, T.; Perez-Victoria, M., Comput. Phys. Commun., 118, 153-165 (1999)
[17] van Oldenborgh, G., Comput. Phys. Commun., 66, 1-15 (1991)
[18] Appell, P., Mémorial des Sciences Mathématiques, 82 (1925), fascicule 3
[19] Saran, S., Acta Math., 93, 293 (1955)
[20] Slater, L., Generalized Hypergeometric Functions (1966), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0135.28101
[21] Czakon, M., Comput. Phys. Commun., 175, 559 (2006)
[22] J. Usovitsch and T. Riemann, New approach to Mellin-Barnes integrals for massive one-loop Feynman integrals, section E.6 in [32]; J. Usovitsch and T. Riemann, New approach to Mellin-Barnes integrals for massive one-loop Feynman integrals, section E.6 in [32]
[23] J. Usovitsch, Mathematica/Fortran package MBnumerics.; J. Usovitsch, Mathematica/Fortran package MBnumerics.
[24] Usovitsch, J. (29 May 2018), Humboldt-Universität zu Berlin, PhD Thesis, Humboldt-Universität zu Berlin
[25] Pochhammer, L., Crelle’s J. Reine Angew. Math., 71, 316 (1870)
[26] Erdelyi, A., Hypergeometric functions of two variables, Acta Math., 83, 131 (1950) · Zbl 0041.39402
[27] Bytev, V.; Kalmykov, M.; Kniehl, B. A., Comput. Phys. Commun., 184, 2332 (2013)
[28] Bytev, V.; Kniehl, B. A., Comput. Phys. Commun., 189, 128 (2015)
[29] Bytev, V.; Kalmykov, M.; Moch, S., Comput. Phys. Commun., 185, 3041 (2014)
[30] Picard, E., Ann. Sci. Éc. Norm. Supér., 10, 2, 305 (1881)
[31] Schlosser, M., (Proceedings of LHCPhenoNet School (2012))
[32] A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann (eds.), Standard Model Theory for the FCC-ee: The Tera-Z, subm. as CERN Yellow Report, http://www.arXiv.org/abs/1809.01830; A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann (eds.), Standard Model Theory for the FCC-ee: The Tera-Z, subm. as CERN Yellow Report, http://www.arXiv.org/abs/1809.01830
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.