×

\({(2+1)}\)-dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography. (English) Zbl 1391.76082

Summary: In this paper, \((2+1)\)-dimensional nonlinear Rossby waves are considered with the generalized beta, the dissipation and the topography which includes both basic part and slowly varying part with time. Starting with a barotropic quasi-geostrophic potential vorticity equation, by using methods of multiscales and perturbation expansions, a generalized forced Zakharov-Kuznetsov equation is obtained in describing the evolution of Rossby wave amplitude. The effects of generalized beta, topography along with latitude and slowly variation with time are all included, indicating that the generalized beta is an essential factor in inducing the nonlinear Rossby solitary waves and the other two are both important factors for the evolution of Rossby wave amplitude. Periodic and solitary wave solutions of Zakharov-Kuznetsov equation are obtained by the elliptic function expansion method; meanwhile, solitary wave solution of generalized forced Zakharov-Kuznetsov equation is obtained by reduced differential transform method. At last, graphical presentations for solitary wave amplitude with different dissipations and slowly varying topographies with time are shown by the Mathematica.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
35C08 Soliton solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Long, R.R.: Solitary waves in the westerlies. J. Atmos. Sci. 21(3), 197-200 (1964) · doi:10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2
[2] Redekopp, L.G.: On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725-745 (1977) · Zbl 0362.76055 · doi:10.1017/S0022112077000950
[3] Wadati, M.: The modified Korteweg-deVries equation. J. Phys. Soc. Jpn. 34, 1289-1296 (1973) · Zbl 1334.35299 · doi:10.1143/JPSJ.34.1289
[4] Redekopp, L.G., Weidman, P.D.: Solitary Rossby waves in zonal shear flows and their interactions. J. Atmos. Sci. 35, 790-804 (1978) · doi:10.1175/1520-0469(1978)035<0790:SRWIZS>2.0.CO;2
[5] Boyd, J.P.: Equatorial solitary waves. Part I: Rossby solitons. J. Phys. Ocean. 10, 1699-1718 (1980) · doi:10.1175/1520-0485(1980)010<1699:ESWPIR>2.0.CO;2
[6] Boyd, J.P.: Equatorial solitary waves. Part 2: Rossby solitons. J. Phys. Ocean. 13, 428-449 (1983) · doi:10.1175/1520-0485(1983)013<0428:ESWPES>2.0.CO;2
[7] Li, M.C., Xue, J.S.: Solitary Rossby waves of tropical atmospheric motion. Acta Meteorol. Sin. 42, 259-268 (1984). (in Chinese)
[8] Ono, H.: Algebraic Rossby wave soliton. J. Phys. Soc. Jpn. 50(8), 2757-2761 (1981) · doi:10.1143/JPSJ.50.2757
[9] Luo, D.H., Ji, L.R.: A theory of blocking formation in the atmosphere. Sci. China 33(3), 323-333 (1989)
[10] Yang, H., Zhao, Q., Yin, B., Dong, H.: A new integro-differential equation for Rossby solitary waves with topography effect in deep rotational fluids. Abstr. Appl. Anal. 2013, 597807 (2013) · Zbl 1432.76067
[11] Yang, H.W., Yang, D.Z., Shi, Y.L., Jin, S.S., Yin, B.S.: Interaction of algebraic Rossby solitary waves with topography and atmospheric blocking. Dyn. Atmos. Oceans 05, 001 (2015)
[12] Yang, H., Yin, B., Shi, Y., Wang, Q.: Forced ILW-Burgers equation as a model for Rossby solitary waves generated by topography in finite depth fluids. J. Appl. Math. 2012 (2012). Article ID 491343 · Zbl 1267.35080
[13] Shi, Y.L., Yin, B.S., Yang, H.W., Yang, D.Z, Xu, Z.H.: Dissipative nonlinear Schrödinger equation for envelope solitary Rossby waves with dissipation effect in stratified fluids and its solution. Abstr. Appl. Anal. 2014 (2014). Article ID 643652 · Zbl 1474.35589
[14] Le, K.C., Nguyen, L.T.K.: Amplitude modulation of waves governed by Korteweg-de Vries equation. Int. J. Eng. Sci. 83, 117 (2014) · Zbl 1423.35343 · doi:10.1016/j.ijengsci.2014.04.019
[15] Le, K.C., Nguyen, L.T.K.: Energy Methods in Dynamics. Springer, Heidelberg (2014) · Zbl 1303.70001 · doi:10.1007/978-3-319-05419-3
[16] Le, K.C., Nguyen, L.T.K.: Amplitude modulation of water waves governed by Boussinesq’s equation. Nonlinear Dyn. 81, 659 (2015) · Zbl 1347.76009 · doi:10.1007/s11071-015-2017-1
[17] Liu, S.K., Tan, B.K.: Rossby waves with the change of \[\beta\] β. J. Appl. Math. Mech. 13(1), 35-44 (1992). (in Chinese)
[18] Luo, D.H.: Solitary Rossby waves with the beta parameter and dipole blocking. J. Appl. Meteorol. 6, 220-227 (1995). (in Chinese)
[19] Song, J., Yang, L.G.: Modified KdV equation for solitary Rossby waves with \[\beta\] β effect in barotropic fluids. Chin. Phys. B 18(07), 2873-2877 (2009) · doi:10.1088/1674-1056/18/7/042
[20] Song, J., Liu, Q.S., Yang, L.G.: Beta effect and slowly changing topography Rossby waves in a shear flow. Acta Phys. Sin. 61(21), 210510 (2012)
[21] Gottwalld, G.A.: The Zakharov-Kuznetsov equation as a two-dimensional model for nonlinear Rossby wave (2009). arXiv: org/abs/nlin/031
[22] Yang, H.W., Xu, Z.H., Yang, D.Z., Feng, X.R., Yin, B.S., Dong, H.H.: ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect. Adv. Differ. Equ. 2016, 167 (2016). doi:10.1186/s13662-016-0901-8 · Zbl 1419.35180 · doi:10.1186/s13662-016-0901-8
[23] Karl, R.H., Melville, W.K., Miles, J.W.: On interfacial solitary waves over slowly varying topography. J. Fluid Mech. 149, 305-317 (1984) · Zbl 0566.76018 · doi:10.1017/S0022112084002664
[24] Song, J., Yang, L.G., Liu, Q.S.: Nonlinear Rossby waves excited slowly changing underlying surface and dissipation. Acta Phys. Sin. 63(6), 060401 (2014). doi:10.7498/aps.63.060401
[25] Da, C.J., Chou, J.F.: Kdv equation with a forcing term for the evolution of the amplitude of Rossby waves along a slowly changing topography. Acta Phys. Sin. 57, 2595 (2008)
[26] Abdou, M.A.: New solitons and periodic wave solutions for nonlinear physical models. Nonlinear Dyn. 52, 129 (2008) · Zbl 1173.35697 · doi:10.1007/s11071-007-9265-7
[27] Ma, W.X., Zhang, Y., Tang, Y.N., Tu, J.Y.: Hirota bilinear equations with linear subspaces of solutions. Appl. Math. Comput. 218, 7174 (2012) · Zbl 1245.35109
[28] Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69-74 (2001) · Zbl 0972.35062 · doi:10.1016/S0375-9601(01)00580-1
[29] Zedan, H.A., Aladrous, E., Shapll, S.: Exact solutions for a perturbed nonlinear Schröinger equation by using Baklund transformations. Nonlinear Dyn. 74, 1145 (2013) · Zbl 1284.35410 · doi:10.1007/s11071-013-1030-5
[30] Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University (1992)
[31] Adomian, G.A.: Review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101-127 (1991) · Zbl 0732.35003 · doi:10.1016/0898-1221(91)90220-X
[32] Wang, M.L.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67 (1996) · Zbl 1125.35401 · doi:10.1016/0375-9601(96)00283-6
[33] Fu, Z.T., Liu, S.K., Liu, S.D., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290, 72-6 (2001) · Zbl 0977.35094 · doi:10.1016/S0375-9601(01)00644-2
[34] He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3), 257 (1999) · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[35] He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[36] Omer, A., Yildiray, K.: Reduced differential transform method for \[(2+1)(2+1)\] dimensional type of the Zakharov-Kuznetsov ZK \[(n,m)\](n,m) equations. Preprint (2014). arXiv:1406.5834 · Zbl 1505.65281
[37] Fu, Z.T., Liu, S.K., Liu, S.D.: Multiple structures of two-dimensional nonlinear Rossby wave. Chaos Solitons Fractals 24, 383-390 (2005) · Zbl 1067.35071 · doi:10.1016/S0960-0779(04)00617-4
[38] Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation. Comput. Math. Appl. 58, 2523-2527 (2009) · Zbl 1189.65252 · doi:10.1016/j.camwa.2009.03.036
[39] Caillol, P., Grimshaw, R.H.: Rossby elevation waves in the presence of a critical layer. Stud. Appl. Math. 120, 35-64 (2008) · Zbl 1386.76049 · doi:10.1111/j.1467-9590.2007.00392.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.