×

Beyond the hypothesis: theory’s role in the genesis, opposition, and pursuit of the Higgs boson. (English) Zbl 1390.81673

Summary: The centrally recognized theoretical achievement that enabled the Higgs boson discovery in 2012 was the hypothesis of its existence, made by Peter Higgs in 1964. Nevertheless, there is a significant body of comparably important theoretical work prior to and after the Higgs boson hypothesis. In this article we present an additional perspective of how crucial theory work was to the genesis of the Higgs boson hypothesis, especially emphasizing its roots in Landau’s theory of phase transitions and subsequent theoretical work on superconductivity. A detailed description is then given of the opposition to the Higgs boson hypothesis by many researchers, giving evidence to its speculative nature. And finally, it is discussed the importance of theory work in the decades after the hypothesis in order to make possible the experimental discovery of the Higgs boson.

MSC:

81V22 Unified quantum theories
81R40 Symmetry breaking in quantum theory
82B26 Phase transitions (general) in equilibrium statistical mechanics
82D55 Statistical mechanics of superconductors
00A79 Physics

Software:

ALPGEN; HDECAY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelelalim, A. A., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, 716, 1 (2012), arXiv:1207.7214 [hep-ex]
[2] Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC \(p p\) collision data at \(\sqrt{s} = 7\) and 8 TeV, JHEP, 1608, 045 (2016), arXiv:1606.02266 [hep-ex]
[3] Abachi, S., Search for high mass top quark production in \(p \overline{p}\) collisions at \(\sqrt{s} = 1.8\) TeV, Physical Review Letters, 74, 2422 (1995), hep-ex/9411001
[4] Abe, F.; Akimoto, H.; Akopian, A.; Albrow, M. G.; Amendolia, S. R.; Amidei, D., Observation of top quark production in \(\overline{p} p\) collisions, Physical Review Letters, 74, 2626 (1995), hep-ex/9503002
[5] Anastasiou, C.; Buehler, S.; Herzog, F.; Lazopoulos, A., Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP, 1204, 004 (2012), arXiv:1202.3638 [hep-ph]
[6] Anderson, P. W., Plasmons, gauge invariance, and mass, Physics Reviews, 130, 439 (1963) · Zbl 0108.42703
[7] Bardeen, J.; Cooper, L. N.; Schrieffer, J. R., Theory of superconductivity, Physics Reviews, 108, 1175 (1957) · Zbl 0090.45401
[8] Bern, Z.; De Freitas, A.; Dixon, L. J., Two loop amplitudes for gluon fusion into two photons, JHEP, 0109, 037 (2001), hep-ph/0109078
[9] Borrelli, A., The story of the Higgs boson: The origin of mass in early particle physics, The European Physical Journal, H40, 1 (2015)
[10] Brown, L. M.; Brout, R.; Cao, T. Y.; Higgs, P.; Nambu, Y., Panel Session: Spontaneneous breaking of symmetry, (Hoddeson, L.; Brown, L.; Riordan, M.; Dresden, M., The rise of the standard Model: Particle physics in the 1960’s and the 1970’s (1997), Cambridge University Press)
[11] Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, 716, 30 (2012), arXiv:1207.7235 [hep-ex]
[12] Chivukula, R. S.; Dobrescu, B. A.; Georgi, H.; Hill, C. T., Top quark seesaw theory of electroweak symmetry breaking, Physics Letters D, 59, 075003 (1999), hep-ph/9809470
[13] Close, F., The infinity puzzle. Basic books: New York (2013), (Reprint ed.)
[14] Collins, H.; Grant, A. K.; Georgi, H., The Phenomenology of a top quark seesaw model, Physical Review D, 61, 055002 (2000), hep-ph/9908330
[15] Cooper, L. N., Bound electron pairs in a degenerate fermi gas, Physical Review, 104, 1189 (1956) · Zbl 0074.23705
[16] Csaki, C.; Grojean, C.; Pilo, L.; Terning, J., Towards a realistic model of Higgsless electroweak symmetry breaking, Physical Review Letters, 92, 101802 (2004), hep-ph/0308038
[17] Djouadi, A.; Kalinowski, J.; Spira, M., Hdecay: A program for Higgs boson decays in the standard model and its supersymmetric extension, Computer Physics Communications, 108, 56 (1998), hep-ph/9704448 · Zbl 0938.81515
[18] Ellis, J. R.; Gaillard, M. K.; Nanopoulos, D. V., A phenomenological profile of the Higgs boson, Nuclear Physics B, 106, 292 (1976)
[19] Englert, F.; Brout, R., Broken symmetry and the mass of gauge vector mesons, Physical Review Letters, 13, 321 (1964)
[20] Fan, J.; Reece, M.; Ruderman, J. T., Stealth supersymmetry, JHEP, 1111, 012 (2011), arXiv:1105.5135 [hep-ph]
[21] Ferrera, G.; Grazzini, M.; Tramontano, F., Associated WH production at hadron colliders: A fully exclusive QCD calculation at NNLO, Physical Review Letters, 107, 152003 (2011), [arXiv:1107.1164 [hep-ph]].C5
[22] Georgi, H., Why I would be very sad if a Higgs boson were discovered, (Kane, G. L., Perspective on Higgs physics II (1997), World Scientific)
[23] Ginzburg, V. L.O.; Landau, L. D., Zhurnal Eksperimental noi i Teoreticheskoi Fiziki, 20, 1064 (1950), For English translation see Landau (1965)
[24] Giudice, G. F., (*Kane, G.; Pierce, A., Perspectives on LHC physics* (2008)), 155-178, arXiv:0801.2562 [hep-ph] · Zbl 1161.81001
[25] Glashow, S. L., Partial symmetries of weak interactions, Nuclear Physics, 22, 579 (1961)
[26] Gunion, J.; Haber, H.; Kane, G.; Dawson, S., The Higgs Hunter’s Guide. New York: Perseus books (1990), Reprinted in 2000
[27] Gunion, J. F.; Kane, G. L.; Wudka, J., Search techniques for charged and neutral intermediate mass Higgs bosons, Nuclear Physics B, 299, 231 (1988)
[28] Gupta, R. S.; Rzehak, H.; Wells, J. D., Physical Review D, 88, 055024 (2013), arXiv:1305.6397 [hep-ph]
[29] Guralnik, G. S.; Hagen, C. R.; Kibble, T. W.B., Global conservation laws and massless particles, Physical Review Letters, 13, 585 (1964)
[30] Higgs, P. W., Broken symmetries and the masses of gauge bosons, Physical Review Letters, 13, 508 (1964)
[31] Higgs, P. W., Broken symmetries, massless particles and gauge fields, Physics Letters, 12, 132 (1964)
[32] Higgs, P. W., Spontaneous symmetry breakdown without massless bosons, Physics Reviews, 145, 1156 (1966)
[33] t Hooft, G., Renormalizable lagrangians for massive yang-mills fields, Nuclear Physics B, 35, 167 (1971)
[34] Karaca, K., The construction of the Higgs mechanism and the emergence of the electroweak theory, Studies In History and Philosophy of Science Part B, 44, 1 (2013) · Zbl 1281.81065
[35] Kibble, T. W.B., Symmetry breaking in non-Abelian gauge theories, Physics Reviews, 155, 1554 (1967)
[36] Lai, H. L.; Huston, J.; Li, Z.; Nadolsky, P.; Pumplin, J.; Stump, D., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Physical Review D, 82, 054021 (2010), arXiv:1004.4624 [hep-ph]
[37] Landau, L. D., On the theory of phase transitions. I, Physikalische Zeitschrift der Sowjetunion, 11, 26 (1937), II: Phys. Z. Sow. 11, 545(1937). For English translation see Landau (1965).
[38] Landau, L. D., Collected papers of L.D. Landau. ed. and intro. by D. ter Haar (1965), Gordon and Breach: Gordon and Breach New York
[39] Landau, L. D.; Lifshitz, E. M., Statistical physics (1980), Butterworth-Heineman: Butterworth-Heineman Amsterdam
[40] Lane, K., Two lectures on technicolor, (Lectures presented at l’École de GIF, LAPP, Annecy-le-Vieux, France (2001)), hep-ph/0202255
[41] Mangano, M. L.; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, A. D., ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP, 0307, 001 (2003), hep-ph/0206293
[42] Martin, S. P., A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys., 21, 1 (2010), [Advanced Series on Directions in High Energy Physics18, 1(1998)] doi:10.1142/9789812839657_0001, 10.1142/9789814307505_0001 [hep-ph/9709356] · Zbl 1202.81229
[43] Massimi, M.; Bhimji, W., Computer simulations and experiments: The case of the Higgs boson, Studies In History and Philosophy of Science Part B, 51, 71 (2015) · Zbl 1320.81102
[44] Nambu, Y., Quasiparticles and gauge invariance in the theory of superconductivity, Physics Reviews, 117, 648 (1960)
[45] Nambu, Y.; Jona-Lasinio, G., Dynamical model of elementary particles based on an analogy with superconductivity. 1, Physics Reviews, 122, 345 (1961)
[46] Parsons, J.; Pomarol, A., “Extra dimensions”, from particle data group (K.A. Olive et al.), review of particle properties, Chinese Physics C, 38, 090001 (2014)
[47] Salam, A., Weak and electromagnetic interactions, (Svartholm, N., Elementary particle theory : Relativistic groups and analyticity (1968), Almqvist & Wiksell), 367, Conf. Proc. C 680519, 367 (1968)
[48] Susskind, L., Dynamics of spontaneous symmetry breaking in the Weinberg-salam theory, Physical Review D, 20, 2619 (1979)
[49] The Nobel Foundation, The Nobel prize in physics (1979)
[50] Vaks, V. G.; Larkin, A. I., On the application of the methods of superconductivity theory to the problem of the masses of elementary particles, JETP, 13, 192 (1961) · Zbl 0109.21701
[51] Veltman, M., Reflections on the Higgs system, (Academic training lectures, CERN, Geneva (1997)), (Accessed 1 September 2016)
[52] Weinberg, S., A model of leptons, Physical Review Letters, 19, 1264 (1967)
[53] Weinberg, S., Effective field theory, past and future, International Journal of Modern Physics A, 31, 06, 1630007 (2016) · Zbl 1336.81007
[54] Wells, J. D., Higgs naturalness and the scalar boson proliferation instability problem, Synthese, 194, 477 (2017), arXiv:1603.06131 [hep-ph]
[55] Wells, J. D., Lectures on Higgs boson physics in the standard model and beyond (2009), British Universities Summer School in Theoretical Particle Physics (BUSSTEPP): British Universities Summer School in Theoretical Particle Physics (BUSSTEPP) Liverpool, UK, arXiv:0909.4541
[56] Wells, J. D., Effective theories in physics : From planetary orbits to elementary particle masses (2012), Springer · Zbl 1267.81004
[57] Wells, J. D., The utility of naturalness, and how its application to quantum electrodynamics envisages the standard model and Higgs boson, Studies in History and Philosophy of Science Part B, 49, 102 (2015), arXiv:1305.3434 [hep-ph] · Zbl 1307.81076
[58] Wilczek, F., Quantum chromodynamics (QCD): The modern theory of the strong interaction, Annual Review of Nuclear and Particle Science, 32, 177 (1982)
[59] Wilczek, F., QCD and natural philosophy, Annales Henri Poincare, 4, S211 (2003), physics/0212025 · Zbl 1043.81005
[60] Wilson, K. G.; Kogut, J. B., The Renormalization group and the epsilon expansion, Physics Reports, 12, 75 (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.