×

Competitive effects in bacterial mRNA decay. (English) Zbl 1453.92122

Summary: In living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay. The model predictions reproduce and explain a number of experimental observations on mRNA decay following transcription arrest, such as delays before the onset of degradation, the occurrence of variable degradation profiles with increased non linearities and the negative correlation between mRNA half-life and concentration. The competition acts at different levels, through the initial concentration of cell mRNAs and by modifying the enzyme affinity for its targets. The consequence is a global slow down of mRNA decay due to enzyme titration and the amplification of its apparent affinity. Competition happens to stabilize weakly affine mRNAs and to destabilize the most affine ones. We believe that this mechanistic model is an interesting alternative to the exponential models commonly used for the determination of mRNA half-lives. It allows analysing regulatory mechanisms of mRNA degradation and its predictions are directly comparable to experimental data.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C70 Microbiology

Software:

IntaRNA; CopraRNA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albe, K. R.; Butler, M. H.; Wright, B. E., Cellular concentrations of enzymes and their substrates, J. Theor. Biol., 143, 2, 163-195 (1990)
[2] Bandyra, K. J.; Wandzik, J. M.; Luisi, B. F., Substrate recognition and autoinhibition in the central ribonuclease RNase E, Mol. Cell, 72, 2, 275-285 (2018)
[3] Bennett, B. D.; Kimball, E. H.; Gao, M.; Osterhout, R.; Van Dien, S. J.; Rabinowitz, J. D., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nat. Chem. Biol., 5, 8, 593-599 (2009)
[4] Bernstein, J. A.; Khodursky, A. B.; Lin, P.-H.; Lin-Chao, S.; Cohen, S. N., Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays, Proc. Natl. Acad. Sci. U.S.A., 99, 15, 9697-9702 (2002)
[5] Bobrovskyy, M., Vanderpool, C.K., Richards, G.R., 2015. Small RNAs regulate primary and secondary metabolism in Gram-negative bacteria. In: Metabolism and Bacterial Pathogenesis. American Society of Microbiology, pp. 59-94.
[6] Bernstein, J. A.; Lin, P. H.; Cohen, S. N.; Lin-Chao, S., Global analysis of Escherichia coli RNA degradosome function using DNA microarrays, Proc. Natl. Acad. Sci. U.S.A., 101, 9, 2758-2763 (2004)
[7] Borghans, J. A.M.; de Boer, R. J.; Segel, L. A., Extending the quasi-steady state approximation by changing variables, Bull. Math. Biol., 58, 1, 43-63 (1996) · Zbl 0866.92010
[8] Briggs, G. E.; Haldane, J. B.S., A note on the kinetics of enzyme action, Biochem. J., 19, 2, 338 (1925)
[9] Buchler, N. E.; Cross, F. R., Protein sequestration generates a flexible ultrasensitive response in a genetic network, Mol. Syst. Biol., 5, 1 (2009)
[10] Callaghan, A. J.; Marcaida, M. J.; Stead, J. A.; McDowall, K. J.; Scott, W. G.; Luisi, B. F., Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover, Nature, 437, 7062, 1187 (2005)
[11] Carpousis, A. J., The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E, Annu. Rev. Microbiol., 61, 71-87 (2007)
[12] Carrier, T. A.; Keasling, J., Mechanistic modeling of prokaryotic mRNA decay, J. Theor. Biol., 189, 2, 195-209 (1997)
[13] Celesnik, H.; Deana, A.; Belasco, J. G., Initiation of RNA decay in Escherichia coli by 5’ pyrophosphate removal, Mol. Cell., 27, 1, 79-90 (2007)
[14] Chao, Y.; Li, L.; Girodat, D.; Förstner, K. U.; Said, N.; Corcoran, C.; Śmiga, M.; Papenfort, K.; Reinhardt, R.; Wieden, H.-J., In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways, Mol. Cell., 65, 1, 39-51 (2017)
[15] Chen, H.; Shiroguchi, K.; Ge, H.; Xie, X. S., Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli, Mol. Syst. Biol., 11, 1, 781 (2015)
[16] Choi, B.; Rempala, G. A.; Kim, J. K., Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters, Sci. Rep., 7, 1, 17018 (2017)
[17] Clarke, J. E.; Kime, L.; Romero, A.; McDowall, D., Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli, Nucleic Acids Res., 42, 18, 11733-11751 (2014)
[18] Cookson, N. A.; Mather, W. H.; Danino, T.; Mondragón-Palomino, O.; Williams, R. J.; Tsimring, L. S.; Hasty, J., Queueing up for enzymatic processing: correlated signaling through coupled degradation, Mol. Syst. Biol., 7, 1 (2011)
[19] Cornish-Bowden, A., The origins of enzyme kinetics, FEBS Lett., 587, 17, 2725-2730 (2013)
[20] Dar, D.; Sorek, R., Extensive reshaping of bacterial operons by programmed mRNA decay, PLoS Genet., 14, 4, Article e1007354 pp. (2018)
[21] De Vos, D.; Bruggeman, F. J.; Westerhoff, H. V.; Bakker, B. M., How molecular competition influences fluxes in gene expression networks, PLoS ONE, 6, 12, Article e28494 pp. (2011)
[22] Deana, A.; Belasco, J., Lost in translation: the influence of ribosomes on bacterial mRNA decay, Genes Dev., 19, 2526-2533 (2005)
[23] Deana, A.; Celesnik, H.; Belasco, J. G., The bacterial enzyme RppH triggers messenger RNA degradation by 5’ pyrophosphate removal, Nature, 451, 7176, 355 (2008)
[24] Del Campo, C.; Bartholomäus, A.; Fedyunin, I.; Ignatova, Z., Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function, PLoS Genet., 11, 10, Article e1005613 pp. (2015)
[25] Deneke, C.; Lipowsky, R.; Valleriani, A., Effect of ribosome shielding on mRNA stability, Phys. Biol., 10, 4, Article 046008 pp. (2013)
[26] Dori-Bachash, M.; Shalem, O.; Manor, Y.; Pilpel, Y.; Tirosh, I., Widespread promoter-mediated coordination of transcription and mRNA degradation, Genome Biol., 13, 12, R114 (2012)
[27] Dori-Bachash, M.; Shema, E.; Tirosh, I., Coupled evolution of transcription and mRNA degradation, PLoS Biol., 9, 7, Article e1001106 pp. (2011)
[28] Dressaire, C.; Pobre, V.; Laguerre, S.; Girbal, L.; Arraiano, C. M.; Cocaign-Bousquet, M., PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli, BMC Genomics, 19, 1, 848 (2018)
[29] Esquerré, T.; Laguerre, S.; Turlan, C.; Carpousis, A. J.; Girbal, L.; Cocaign-Bousquet, M., Dual role of transcription and transcript stability in the regulation of gene expression in Escherichia coli cells cultured on glucose at different growth rates, Nucleic Acids Res., 42, 4, 2460-2472 (2014)
[30] Esquerré, T.; Moisan, A.; Chiapello, H.; Arike, L.; Vilu, R.; Gaspin, C.; Cocaign-Bousquet, M.; Girbal, L., Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates, BMC Genom., 16, 1, 275 (2015)
[31] Garrey, S. M.; Mackie, G. A., Roles of the 5’-phosphate sensor domain in RNase E, Mol. Microbiol., 80, 6, 1613-1624 (2011)
[32] Hartenian, E.; Glaunsinger, B. A., Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes, Crit. Rev. Biochem. Mol. Biol., 54, 4, 385-398 (2019)
[33] Heinrich, R.; Schuster, S., The Regulation of Cellular Systems (1996), Chapman and Hall: Chapman and Hall New-York · Zbl 0895.92013
[34] Huang, C.-Y.; Ferrell, J. E., Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci. U.S.A., 93, 19, 10078-10083 (1996)
[35] Huang, H.; Liao, J.; Stanley, N. C., Poly (A)-and poly (U)-specific RNA 3’ tail shortening by E. coli ribonuclease E, Nature, 391, 6662, 99 (1998)
[36] Hundt, S.; Zaigler, A.; Lange, C.; Soppa, J.; Klug, G., Global analysis of mRNA decay in Halobacterium salinarum NRC-1 at single-gene resolution using DNA microarrays, J. Bacteriol., 189, 19, 6936-6944 (2007)
[37] Ingalls, B. P.; Sauro, H. M., Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories, J. Theor. Biol., 222, 1, 23-36 (2003) · Zbl 1464.92110
[38] Jain, C.; Belasco, J., Autoregulation of RNase E synthesis in Escherichia coli, Nucleic Acids Symp. Series. No., 33, 85-88 (1995)
[39] Jain, C.; Belasco, J. G., RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity, Genes Dev., 9, 1, 84-96 (1995)
[40] Jeske, L.; Placzek, S.; Schomburg, I.; Chang, A.; Schomburg, D., BRENDA in 2019: a European ELIXIR core data resource, Nucleic Acids Res., 47, D1, D542-D549 (2018)
[41] Jiang, X.; Belasco, J. G., Catalytic activation of multimeric RNase E and RNase G by 5’-monophosphorylated RNA, Proc. Natl. Acad. Sci. U.S.A., 101, 25, 9211-9216 (2004)
[42] Keseler, I. M.; Mackie, A.; Santos-Zavaleta, A.; Billington, R.; Bonavides-Martínez, C.; Caspi, R.; Fulcher, C.; Gama-Castro, S.; Kothari, A.; Krummenacker, M., The EcoCyc database: reflecting new knowledge about Escherichia coli K-12, Nucleic Acids Res., 45, D1, D543-D550 (2017)
[43] Kiel, C.; Serrano, L., Challenges ahead in signal transduction: MAPK as an example, Curr. Opin. Biotechnol., 23, 3, 305-314 (2012)
[44] Kim, K.-S.; Sim, S.; Ko, J.-H.; Cho, B.; Lee, Y., Kinetic analysis of precursor M1 RNA molecules for exploring substrate specificity of the N-terminal catalytic half of RNase E, J. Biochem., 136, 5, 693-699 (2004)
[45] Kim, Y.; Andreu, M. J.; Lim, B.; Chung, K.; Terayama, M.; Jiménez, G.; Berg, C. A.; Lu, H.; Shvartsman, S. Y., Gene regulation by MAPK substrate competition, Dev. Cell, 20, 6, 880-887 (2011)
[46] Kim, Y.; Coppey, M.; Grossman, R.; Ajuria, L.; Jiménez, G.; Paroush, Z.; Shvartsman, S. Y., MAPK substrate competition integrates patterning signals in the Drosophila embryo, Curr. Biol., 20, 5, 446-451 (2010)
[47] Kime, L.; Jourdan, S. S.; McDowall, K. J., Identifying and characterizing substrates of the RNase E/G family of enzymes, Methods Enzymol., 447, 215-241 (2008)
[48] Kime, L.; Jourdan, S. S.; Stead, J. A.; Hidalgo-Sastre, A.; McDowall, K. J., Rapid cleavage of RNA by RNase E in the absence of 5’ monophosphate stimulation, Mol. Microbiol., 76, 3, 590-604 (2010)
[49] Kushner, S. R., mRNA decay in Escherichia coli comes of age, J. Bacteriol., 184, 17, 4658-4665 (2002)
[50] Laguerre, S.; González, I.; Nouaille, S.; Moisan, A.; Villa-Vialaneix, N.; Gaspin, C.; Bouvier, M.; Carpousis, A. J.; Cocaign-Bousquet, M.; Girbal, L., Large-scale measurement of mRNA degradation in Escherichia coli: To delay or not to delay, Methods Enzymol., 612, 47-66 (2018)
[51] Lee, K.; Zhan, X.; Gao, J.; Qiu, J.; Feng, Y.; Meganathan, R.; Cohen, S. N.; Georgiou, G., RraA: a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli, Cell, 114, 5, 623-634 (2003)
[52] Legewie, S.; Schoeberl, B.; Blüthgen, N.; Herzel, H., Competing docking interactions can bring about bistability in the mapk cascade, Biophys. J., 93, 7, 2279-2288 (2007)
[53] Luciano, D. J.; Vasilyev, N.; Richards, J.; Serganov, A.; Belasco, J. G., A novel RNA phosphorylation state enables 5’ end-dependent degradation in Escherichia coli, Mol. Cell, 67, 1, 44-54 (2017)
[54] Lugowski, A.; Nicholson, B.; Rissland, O. S., Determining mRNA half-lives on a transcriptome-wide scale, Methods, 137, 90-98 (2018)
[55] Lykke-Andersen, S.; Brodersen, D. E.; Jensen, T. H., Origins and activities of the eukaryotic exosome, J. Cell Sci., 122, 10, 1487-1494 (2009)
[56] Mackie, G. A., Ribonuclease E is a 5’-end-dependent endonuclease, Nature, 395, 6703, 720 (1998)
[57] Mackie, G. A., RNase E: at the interface of bacterial RNA processing and decay, Nat. Rev. Microbiol., 11, 1, 45 (2013)
[58] Marcaida, M. J.; DePristo, M. A.; Chandran, V.; Carpousis, A. J.; Luisi, B. F., The RNA degradosome: life in the fast lane of adaptive molecular evolution, Trends Biochem. Sci., 31, 7, 359-365 (2006)
[59] McDowall, K. J.; Kaberdin, V. R.; Wu, S.-W.; Cohen, S. N.; Lin-Chao, S., Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops, Nature, 374, 6519, 287 (1995)
[60] McDowall, K. J.; Lin-Chao, S.; Cohen, S. N., A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage, J. Biol. Chem., 269, 14, 10790-10796 (1994)
[61] Mehra, A.; Hatzimanikatis, V., An algorithmic framework for genome-wide modeling and analysis of translation networks, Biophys. J., 90, 4, 1136-1146 (2006)
[62] Moffitt, J. R.; Pandey, S.; Boettiger, A. N.; Wang, S.; Zhuang, X., Spatial organization shapes the turnover of a bacterial transcriptome, Elife, 5, Article e13065 pp. (2016)
[63] Mohanty, B. K.; Kushner, S. R., Regulation of mRNA decay in bacteria, Ann. Rev. Microbiol., 70, 25-44 (2016)
[64] Morozova, N.; Zinovyev, A.; Nonne, N.; Pritchard, L.-L.; Gorban, A. N.; Harel-Bellan, A., Kinetic signatures of microRNA modes of action, RNA, 18, 9, 1635-1655 (2012)
[65] Nouaille, S.; Mondeil, S.; Finoux, A.-L.; Moulis, C.; Girbal, L.; Cocaign-Bousquet, M., The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression, Nucleic Acids Res., 45, 20, 11711-11724 (2017)
[66] Pedersen, M. G.; Bersanib, A. M.; Bersanic, E., The total quasi-steady-state approximation for fully competitive enzyme reactions, Bull. Math. Biol., 69, 1, 433 (2007) · Zbl 1133.92323
[67] Potts, A. H.; Vakulskas, C. A.; Pannuri, A.; Yakhnin, H.; Babitzke, P.; Romeo, T., Global role of the bacterial post-transcriptional regulator csra revealed by integrated transcriptomics, Nature Comm., 8, 1, 1596 (2017)
[68] Richards, J.; Belasco, J. G., Obstacles to scanning by RNase E govern bacterial mRNA lifetimes by hindering access to distal cleavage sites, Mol. Cell, 74, 2, 284-295 (2019)
[69] Richards, J.; Luciano, D. J.; Belasco, J. G., Influence of translation on RppH-dependent mRNA degradation in Escherichia coli, Mol. Microbiol., 86, 5, 1063-1072 (2012)
[70] Santiago-Frangos, A.; Woodson, S. A., Hfq chaperone brings speed dating to bacterial sRNA, RNA, 9, 4, Article e1475 pp. (2018)
[71] Schneider, R.; Travers, A.; Kutateladze, T.; Muskhelishvili, G., A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli, Mol. Microbiol., 34, 5, 953-964 (1999)
[72] Schnell, S.; Maini, P., Enzyme kinetics at high enzyme concentration, Bull. Math. Biol., 62, 3, 483-499 (2000) · Zbl 1323.92099
[73] Segel, L. A.; Slemrod, M., The quasi-steady-state assumption: a case study in perturbation, SIAM Rev., 31, 3, 446-477 (1989) · Zbl 0679.34066
[74] Shalem, O.; Groisman, B.; Choder, M.; Dahan, O.; Pilpel, Y., Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II, PLoS Genet., 7, 9 (2011)
[75] Sols, A., Marco, R., 1970. Concentrations of metabolites and binding sites. implications in metabolic regulation. In: Curr Topics Cellular Reg. vol. 2. Elsevier, pp. 227-273.
[76] Sousa, S.; Marchand, I.; Dreyfus, M., Autoregulation allows Escherichia coli RNase E to adjust continuously its synthesis to that of its substrates, Mol. Microbiol., 42, 3, 867-878 (2001)
[77] Stead, M. B.; Marshburn, S.; Mohanty, B. K.; Mitra, J.; Castillo, L. P.; Ray, D.; Van Bakel, H.; Hughes, T. R.; Kushner, S. R., Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays, Nucleic Acids Res., 39, 8, 3188-3203 (2010)
[78] Strahl, H.; Turlan, C.; Khalid, S.; Bond, P. J.; Kebalo, J.-M.; Peyron, P.; Poljak, L.; Bouvier, M.; Hamoen, L.; Luisi, B. F., Membrane recognition and dynamics of the RNA degradosome, PLoS Genet., 11, 2, Article e1004961 pp. (2015)
[79] Sun, M.; Schwalb, B.; Schulz, D.; Pirkl, N.; Etzold, S.; Larivière, L.; Maier, K. C.; Seizl, M.; Tresch, A.; Cramer, P., Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation, Genome Res., 22, 7, 1350-1359 (2012)
[80] Suzuki, K.; Babitzke, P.; Kushner, S. R.; Romeo, T., Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E, Genes Dev., 20, 18, 2605-2617 (2006)
[81] Tadmor, A.; Tlusty, T., A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number, PLoS Comput. Biol., 4 (2008), e1000038-e1000038
[82] Tang, J.; Riley, W., A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition, Biogeosciences, 10, 12, 8329-8351 (2013)
[83] Tang, J.; Riley, W., SUPECA kinetics for scaling redox reactions in networks of mixed substrates and consumers and an example application to aerobic soil respiration, Geosci. Model Dev., 10, 3277-3295 (2017)
[84] Thomas, P.; Terradot, G.; Danos, V.; Weiße, A. Y., Sources, propagation and consequences of stochasticity in cellular growth, Nat. Commun., 9, 1, 4528 (2018)
[85] Tzafriri, A., Michaelis-Menten kinetics at high enzyme concentrations, Bull. Math Biol., 65, 6, 1111-1129 (2003) · Zbl 1334.92185
[86] Tzafriri, A.; Bercovier, M.; Parnas, H., Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices, Biophys. J., 83, 2, 776-793 (2002)
[87] Tzafriri, A.; Edelman, E., The total quasi-steady-state approximation is valid for reversible enzyme kinetics, J. Theor. Biol., 226, 3, 303-313 (2004) · Zbl 1439.92105
[88] Valgepea, K.; Adamberg, K.; Seiman, A.; Vilu, R., Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins, Mol. Biosyst., 9, 9, 2344-2358 (2013)
[89] Wang, Y.; Liu, C. L.; Storey, J. D.; Tibshirani, R. J.; Herschlag, D.; Brown, P. O., Precision and functional specificity in mRNA decay, Proc. Natl. Acad. Sci. U.S.A., 99, 9, 5860-5865 (2002)
[90] Weiße, A. Y.; Oyarzún, D. A.; Danos, V.; Swain, P. S., Mechanistic links between cellular trade-offs, gene expression, and growth, Proc. Natl. Acad. Sci. U.S.A., 112, 9, E1038-E1047 (2015)
[91] Wright, P. R.; Georg, J.; Mann, M.; Sorescu, D. A.; Richter, A. S.; Lott, S.; Kleinkauf, R.; Hess, W. R.; Backofen, R., CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains, Nucleic Acids Res., 42, W1, W119-W123 (2014)
[92] Yandek, L. E.; Lin, H.-C.; Harris, M. E., Alternative substrate kinetics of Escherichia coli ribonuclease P determination of relative rate constants by internal competition, J. Biol. Chem., 288, 12, 8342-8354 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.