×

Cantorian \(\mathcal E^{(\infty)}\) space-time and generalized superconductivity. (English) Zbl 1046.82523

Summary: In fractal space-time theory we built a superconducting model for generalized fields (electromagnetic and linear gravitation): generalized Maxwell and London’s equations, generalized Meissner and shielding effects, oscillation modes in thin cylindrical generalized superconductors (generalized supertrons) and generalized superconductivity as a gauge theory. In such a context the atomic, planetary and double galaxies systems are self-organized as fractal superconducting structures. The Cantorian \({\mathcal E}^{(\infty)}\) structure of space-time implies a two-dimensional cnoidal distribution of the particles concentration for the solid-liquid interface and allows the evaluation of the kinetic moment of a neutron star.

MSC:

82D55 Statistical mechanics of superconductors
85A15 Galactic and stellar structure
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nottale, L., Fractal space-time and microphysics: towards a theory of scale relativity (1993), World Scientific: World Scientific Singapore · Zbl 0789.58003
[2] El Naschie, M. S.; Rossler, O. E.; Prigogine, I., Quantum mechanics, diffusion and chaotic fractals (1995), Elesevier: Elesevier Oxford · Zbl 0830.58001
[3] Notalle, L., Chaos, Solitons & Fractals, 7, 6, 877 (1996)
[4] Nelson, E., Quantum fluctuations (1985), Princeton University Press: Princeton University Press Princeton · Zbl 0563.60001
[5] El Naschie, M. S., Chaos, Solitons & Fractals, 8, 1, 131 (1996)
[6] El Naschie, M. S., Chaos, Solitons & Fractals, 8, 5, 847 (1997)
[7] El Naschie, M. S., Chaos, Solitons & Fractals, 11, 7, 1149 (2000)
[8] El Naschie, M. S., Chaos, Solitons & Fractals, 11, 1, 1459 (2000)
[9] Guth, A. H., The inflationary universe (1997), Jonathan Cape: Jonathan Cape London
[10] Argyris, J.; Ciubotariu, C. I.; Weingaertner, W. E., Chaos, Solitons & Fractals, 11, 1663 (2000)
[11] Agop, M.; Griga, V.; Ciobanu, B.; Ciubotariu, C.; Buzea, C. Gh.; Stan, C.; Buzea, C., Chaos, Solitons & Fractals, 9, 7, 1143 (1998)
[12] Agop M, Nica P. Chaos Solitons & Fractals 1999;10 (8):1295; Agop M, Nica P. Chaos Solitons & Fractals 1999;10 (8):1295
[13] Braginsky, V. B.; Polnarev, A. G.; Thorne, K. S., Phys Rev Lett, 53, 863 (1984)
[14] Meystre, P.; Scully, M. O., Quantum optics, experimental gravitation and measurement theory (1983), Plenum Press: Plenum Press New York
[15] Peng, H., Gen Relativ Gravit, 15, 725 (1983)
[16] Bertotti, B., Experimental gravitation (1984), Academic Press: Academic Press New York
[17] Madsen, M. S., Classical Quantum Gravity, 87, 4 (1990)
[18] Ciubotariu C, Gottlieb I, Simaciu I, Griga V, Ciubotariu CI, Croitoru S, Tensor NS. 1993;52:138; Ciubotariu C, Gottlieb I, Simaciu I, Griga V, Ciubotariu CI, Croitoru S, Tensor NS. 1993;52:138
[19] Burns, G., High temperature superconductivity: an introduction (1992), Academic Press: Academic Press San Diego
[20] Agop, M.; Rezlescu, N.; Kalogirou, G., Nonlinear phenomena in materials science (1999), Graphics Art Publishing House: Graphics Art Publishing House Athena, Greece
[21] Ciubotariu, C.; Agop, M., Gen Relativ Gravit, 28, 4, 405 (1996)
[22] Peng, H., Gen Relativ Gravit, 22, 5, 609 (1990)
[23] Agop, M.; Ciobanu, B.; Buzea, C. Gh.; Rezlescu, N.; Horgos, T.; Stan, C., Il Nuovo Cimento B, 113, 1, 17 (1998)
[24] Agop, M.; Buzea, C. Gh.; Griga, V.; Ciubotariu, C.; Buzea, C.; Stan, C.; Tatomir, D., Aust J Phys, 49, 1063 (1996)
[25] Podkletnov, E.; Nieminen, R., Physica C, 203, 441 (1992)
[26] Pole, C. P.; Farach, H. A.; Creswick, R. J., Superconductivity (1995), Academic Press: Academic Press San Diego
[27] Bowman, F., Introduction to elliptic function with applications (1955), English University Press: English University Press London
[28] Buzea, C. Gh.; Agop, M.; Rezlescu, N., Jpn J Appl Phys, 38, 5863 (1999)
[29] Matsuzawa, H., J Appl Phys, 74, 1111 (1993)
[30] Agnese, A. G.; Festa, R., Phys Lett A, 227, 165 (1997)
[31] Sanduloviciu, M.; Borcea, I.; Leu, G.; Melnic, V., J Tech Phys, 37, 3-4, 553 (1996)
[32] Agop M, Strat M, Strat G, Nica P, Stan C. Theoretical and experimental aspects on basic processes in discharge plasma double layers. Romanian Reports in Physics (in press); Agop M, Strat M, Strat G, Nica P, Stan C. Theoretical and experimental aspects on basic processes in discharge plasma double layers. Romanian Reports in Physics (in press)
[33] Kurtz, W.; Fischer, D. J., Fundamentals of solidification, Trans Tech Publ (1989)
[34] Spanulescu, I., Thin layers physics (1975), Scientific and Encyclopedic Publishing House: Scientific and Encyclopedic Publishing House Bucharest
[35] Crisan, M.; Anghel, Al., Phase transitions and critical phenomenon (1983), Dacia Press: Dacia Press Cluj-Napoca
[36] Cojocaru, V., Theoretical fundamentals of alloys elaboration (1993), Technical Univ. “Gh Asachi” Press: Technical Univ. “Gh Asachi” Press Iasi
[37] Nistor, I., Numerical analysis (1997), Ed. Univ. Gh. Asachi: Ed. Univ. Gh. Asachi Iasi
[38] Allen, J. E., Plasma Phys Contr Fusion, 42, 321 (1989)
[39] Jackson EA. Perspectives of nonlinear dynamics, vol. I. Cambridge: Cambridge University Press; 1991; Jackson EA. Perspectives of nonlinear dynamics, vol. I. Cambridge: Cambridge University Press; 1991
[40] Cross, M. C.; Hohenberg, P. C., Rev Mod Phys, 65, 3, 1050 (1993)
[41] Toda, M., Theory of nonlinear lattices (1988), Springer: Springer Berlin
[42] Roth, P., J Appl Phys, 77, 4914 (1995)
[43] Roth, P., J Appl Phys, 78, 2874 (1995)
[44] Ho Vu, B.; Morgan, M. J., Aust J Phys, 47, 245 (1994)
[45] Chaichian, M.; Nelipa, F., Introduction in the Gauge theory (1984), Springer: Springer Berlin
[46] Tifft, W.; Cocke, W., Astrophys J, 287, 492 (1984)
[47] Schneider, S. E.; Salpeter, E. E., Astrophys J, 295, 32 (1992)
[48] Agop, M.; Matsusawa, H.; Oprea, I.; Vlad, R.; Sandu, C.; Buzea, C. Gh., Aust J Phys, 35, 1 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.