Singh, Balbir; Gupta, Vishal; Kumar, Pawan Existence of fixed point of Meir Keeler type contractive condition in fuzzy metric spaces. (English) Zbl 07246089 Electron. J. Math. Analysis Appl. 9, No. 1, 216-225 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{B. Singh} et al., Electron. J. Math. Analysis Appl. 9, No. 1, 216--225 (2021; Zbl 07246089) Full Text: Link
Jain, Shobha; Jain, Shishir Compatible and weakly compatible maps in a complex fuzzy metric space. (English) Zbl 07314234 Jordan J. Math. Stat. 13, No. 2, 249-267 (2020). MSC: 40H05 46A45 PDF BibTeX XML Cite \textit{S. Jain} and \textit{S. Jain}, Jordan J. Math. Stat. 13, No. 2, 249--267 (2020; Zbl 07314234) Full Text: Link
Wu, Xinxing; Chen, Guanrong Answering an open question in fuzzy metric spaces. (English) Zbl 1452.54008 Fuzzy Sets Syst. 390, 188-191 (2020). MSC: 54A40 54E35 PDF BibTeX XML Cite \textit{X. Wu} and \textit{G. Chen}, Fuzzy Sets Syst. 390, 188--191 (2020; Zbl 1452.54008) Full Text: DOI
Rashid, Mohammad H. M. Fixed point theorems for non-self mappings with nonlinear contractive condition in strictly convex FCM-spaces. (English) Zbl 1451.54022 J. Indones. Math. Soc. 26, No. 1, 1-21 (2020). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{M. H. M. Rashid}, J. Indones. Math. Soc. 26, No. 1, 1--21 (2020; Zbl 1451.54022) Full Text: DOI
Cho, Kyugeun; Lee, Chongsung Some results on convergences in fuzzy metric spaces and fuzzy normed spaces. (English) Zbl 1451.54001 Commun. Korean Math. Soc. 35, No. 1, 185-199 (2020). MSC: 54A40 54A20 PDF BibTeX XML Cite \textit{K. Cho} and \textit{C. Lee}, Commun. Korean Math. Soc. 35, No. 1, 185--199 (2020; Zbl 1451.54001) Full Text: DOI
Rehman, Saif Ur; Jabeen, Shamoona; Abbas, Fatima; Ullah, Hayat; Khan, Ihsan Common fixed point theorems for compatible and weakly compatible maps in fuzzy cone metric spaces. (English) Zbl 1444.54037 Ann. Fuzzy Math. Inform. 19, No. 1, 1-19 (2020). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. U. Rehman} et al., Ann. Fuzzy Math. Inform. 19, No. 1, 1--19 (2020; Zbl 1444.54037) Full Text: DOI
Dinarvand, Mina Fixed points for fuzzy quasi-contractions in fuzzy metric spaces endowed with a graph. (English) Zbl 1444.54028 Appl. Gen. Topol. 21, No. 2, 177-194 (2020). MSC: 54H25 47H10 05C40 PDF BibTeX XML Cite \textit{M. Dinarvand}, Appl. Gen. Topol. 21, No. 2, 177--194 (2020; Zbl 1444.54028) Full Text: Link
Nurwahyu, Budi Some properties of common fixed point for two self-mappings on some contraction mappings in quasi \(\alpha b\)-metric space. (English) Zbl 1440.54040 Nonlinear Funct. Anal. Appl. 25, No. 1, 175-188 (2020). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{B. Nurwahyu}, Nonlinear Funct. Anal. Appl. 25, No. 1, 175--188 (2020; Zbl 1440.54040) Full Text: Link
Sharma, Rajinder; Gupta, Vishal; Kushwaha, Mukesh New results for compatible mappings of type a and subsequential continuous mappings. (English) Zbl 1437.54067 Appl. Appl. Math. 15, No. 1, 282-295 (2020). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{R. Sharma} et al., Appl. Appl. Math. 15, No. 1, 282--295 (2020; Zbl 1437.54067) Full Text: Link
Saha, P.; Guria, S.; Choudhury, Binayak S.; Das, Pradyut Solution of a fuzzy global optimization problem by fixed point methodology using a weak coupled contraction. (English) Zbl 1436.90181 Soft Comput. 24, No. 6, 4121-4129 (2020). MSC: 90C70 90C26 PDF BibTeX XML Cite \textit{P. Saha} et al., Soft Comput. 24, No. 6, 4121--4129 (2020; Zbl 1436.90181) Full Text: DOI
Brydun, Viktoriya; Savchenko, Aleksandr; Zarichnyi, Mykhailo Fuzzy metrization of the spaces of idempotent measures. (English) Zbl 1437.54007 Eur. J. Math. 6, No. 1, 98-109 (2020). Reviewer: Sergejs Solovjovs (Riga) MSC: 54A40 03E72 46E27 54B30 54D30 54E35 54E70 PDF BibTeX XML Cite \textit{V. Brydun} et al., Eur. J. Math. 6, No. 1, 98--109 (2020; Zbl 1437.54007) Full Text: DOI
Sima, Ao-Lei; He, Fei; Lu, Ning Pata-type fixed-point theorems in Kaleva-Seikkala’s type fuzzy metric space. (English) Zbl 1437.54069 J. Funct. Spaces 2020, Article ID 6185894, 9 p. (2020). Reviewer: Choonkil Park (Seoul) MSC: 54H25 54E40 54A40 PDF BibTeX XML Cite \textit{A.-L. Sima} et al., J. Funct. Spaces 2020, Article ID 6185894, 9 p. (2020; Zbl 1437.54069) Full Text: DOI
Jäger, G. The Wijsman structure of a quantale-valued metric space. (English) Zbl 1429.54008 Iran. J. Fuzzy Syst. 17, No. 1, 171-184 (2020). MSC: 54A40 54B20 54E70 54E99 PDF BibTeX XML Cite \textit{G. Jäger}, Iran. J. Fuzzy Syst. 17, No. 1, 171--184 (2020; Zbl 1429.54008) Full Text: DOI
Khan, Sami Ullah; Ahmad, Jamshaid; Arshad, Muhmmad; Rasham, Tahair Some new fixed point theorems in \(C^*\)-algebra valued \(G_b\)-metric spaces. (English) Zbl 07273988 J. Adv. Math. Stud. 12, No. 1, 22-29 (2019). MSC: 47H10 54H25 46S40 PDF BibTeX XML Cite \textit{S. U. Khan} et al., J. Adv. Math. Stud. 12, No. 1, 22--29 (2019; Zbl 07273988)
Sayed, A. F.; Ahmad, Jamshaid; Hussain, Aftab New investigation of Ćirić type fuzzy soft contractive mapping in fuzzy soft metric spaces. (English) Zbl 07273181 Bull. Int. Math. Virtual Inst. 9, No. 3, 577-589 (2019). MSC: 54A40 54E50 54E40 03E72 47H10 PDF BibTeX XML Cite \textit{A. F. Sayed} et al., Bull. Int. Math. Virtual Inst. 9, No. 3, 577--589 (2019; Zbl 07273181) Full Text: DOI
Verma, R. K.; Pathak, H. K. Common fixed point theorems in complex valued metric space and application. (English) Zbl 1441.54041 Thai J. Math. 17, No. 1, 75-88 (2019). MSC: 54H25 54A40 47H10 PDF BibTeX XML Cite \textit{R. K. Verma} and \textit{H. K. Pathak}, Thai J. Math. 17, No. 1, 75--88 (2019; Zbl 1441.54041) Full Text: Link
Zhang, Shuyi; Zhang, Xinyu; Nie, Hui Common fixed point theorems for a class of integral type contractive mappings in fuzzy metric spaces. (Chinese. English summary) Zbl 07234275 J. Tianjin Norm. Univ., Nat. Sci. Ed. 39, No. 4, 28-32 (2019). MSC: 54H25 54A40 54E50 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Tianjin Norm. Univ., Nat. Sci. Ed. 39, No. 4, 28--32 (2019; Zbl 07234275) Full Text: DOI
Goswami, Nilakshi; Patir, Bijoy Fixed point theorems for asymptotically regular mappings in fuzzy metric spaces. (English) Zbl 1435.54022 Korean J. Math. 27, No. 4, 861-877 (2019). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{N. Goswami} and \textit{B. Patir}, Korean J. Math. 27, No. 4, 861--877 (2019; Zbl 1435.54022) Full Text: DOI
Badshah-e-Rome; Sarwar, Muhammad; Kumam, Poom Fixed point theorems via \(\alpha-\varrho\)-fuzzy contraction. (English) Zbl 1432.54005 Axioms 8, No. 2, Paper No. 69, 9 p. (2019). MSC: 54A40 54H25 PDF BibTeX XML Cite \textit{Badshah-e-Rome} et al., Axioms 8, No. 2, Paper No. 69, 9 p. (2019; Zbl 1432.54005) Full Text: DOI
Raj, K.; Pandoh, S. On some spaces of Cesàro sequences of fuzzy numbers associated with \(\lambda \)-convergence and Orlicz function. (English) Zbl 1448.46011 Acta Univ. Sapientiae, Math. 11, No. 1, 156-171 (2019). MSC: 46A45 40A05 40C05 26E50 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. Pandoh}, Acta Univ. Sapientiae, Math. 11, No. 1, 156--171 (2019; Zbl 1448.46011) Full Text: DOI Link
Sumalai, Phumin; Kumam, Poom; Gopal, Dhananjay; Hasan, Mohd Common fixed point theorems in fuzzy metric-like spaces employing common property (E.A.). (English) Zbl 07166495 Math. Methods Appl. Sci. 42, No. 17, 5834-5844 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{P. Sumalai} et al., Math. Methods Appl. Sci. 42, No. 17, 5834--5844 (2019; Zbl 07166495) Full Text: DOI
Majumder, Arunima; Bag, T. Some results on fuzzy cone metric spaces. (English) Zbl 1427.54018 J. Fuzzy Math. 27, No. 1, 217-228 (2019). MSC: 54A40 54E35 54H25 PDF BibTeX XML Cite \textit{A. Majumder} and \textit{T. Bag}, J. Fuzzy Math. 27, No. 1, 217--228 (2019; Zbl 1427.54018)
Subramanian, N.; Esi, A.; Aiyub, M. Generalized difference of \(d(\chi^{2I})\) of fuzzy real numbers over \(p\) metric spaces defined by Musielak Orlicz function. (English) Zbl 1427.46054 J. Fuzzy Math. 27, No. 1, 63-75 (2019). MSC: 46S40 46A45 PDF BibTeX XML Cite \textit{N. Subramanian} et al., J. Fuzzy Math. 27, No. 1, 63--75 (2019; Zbl 1427.46054)
Hathiwala, Minakshi Biswas; Phukan, Chandra Kanta Fuzzy codon complements. (English) Zbl 1428.92083 J. Indian Acad. Math. 41, No. 1, 99-118 (2019). MSC: 92D20 20N25 PDF BibTeX XML Cite \textit{M. B. Hathiwala} and \textit{C. K. Phukan}, J. Indian Acad. Math. 41, No. 1, 99--118 (2019; Zbl 1428.92083)
Humaira; Sarwar, Muhammad; Kumam, Poom Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results. (English) Zbl 1423.54082 Symmetry 11, No. 1, Paper No. 61, 17 p. (2019). MSC: 54H25 32C15 54E35 03E72 PDF BibTeX XML Cite \textit{Humaira} et al., Symmetry 11, No. 1, Paper No. 61, 17 p. (2019; Zbl 1423.54082) Full Text: DOI
Hoang, Long Viet; Nguyen, Thi Kim Son; Thao, Phuong Hoang System of fuzzy fractional differential equations in generalized metric space. (English) Zbl 1429.34006 Iran. J. Fuzzy Syst. 16, No. 2, 107-121 (2019). MSC: 34A07 34A08 PDF BibTeX XML Cite \textit{L. V. Hoang} et al., Iran. J. Fuzzy Syst. 16, No. 2, 107--121 (2019; Zbl 1429.34006) Full Text: DOI
Mišík, Ladislav; Tóth, János T. On partial limits of sequences. (English) Zbl 1423.40001 Fuzzy Sets Syst. 375, 179-190 (2019). MSC: 40A05 28E10 PDF BibTeX XML Cite \textit{L. Mišík} and \textit{J. T. Tóth}, Fuzzy Sets Syst. 375, 179--190 (2019; Zbl 1423.40001) Full Text: DOI
Zheng, Dingwei; Wang, Pei Meir-Keeler theorems in fuzzy metric spaces. (English) Zbl 1423.54029 Fuzzy Sets Syst. 370, 120-128 (2019). MSC: 54A40 54E15 54H25 PDF BibTeX XML Cite \textit{D. Zheng} and \textit{P. Wang}, Fuzzy Sets Syst. 370, 120--128 (2019; Zbl 1423.54029) Full Text: DOI
He, Jialiang; Lai, Hongliang; Shen, Lili Towards probabilistic partial metric spaces: diagonals between distance distributions. (English) Zbl 1423.54020 Fuzzy Sets Syst. 370, 99-119 (2019). MSC: 54A40 54E70 06F07 PDF BibTeX XML Cite \textit{J. He} et al., Fuzzy Sets Syst. 370, 99--119 (2019; Zbl 1423.54020) Full Text: DOI
Li, Hongliang; Pei, Huili The discussion on basic theorem in fuzzy number space with supremum metric. (Chinese. English summary) Zbl 1438.54057 Fuzzy Syst. Math. 33, No. 2, 70-74 (2019). MSC: 54A40 54E35 PDF BibTeX XML Cite \textit{H. Li} and \textit{H. Pei}, Fuzzy Syst. Math. 33, No. 2, 70--74 (2019; Zbl 1438.54057)
Lu, Hanchuan; Fu, Wenqing; Li, Shenggang Equicontinuous of fuzzy dynamical systems and distal fuzzy dynamic system. (English) Zbl 1438.37004 Chin. J. Eng. Math. 36, No. 1, 115-122 (2019). MSC: 37B02 34A07 54A40 PDF BibTeX XML Cite \textit{H. Lu} et al., Chin. J. Eng. Math. 36, No. 1, 115--122 (2019; Zbl 1438.37004) Full Text: DOI
Rashid, M. H. M. Topological degree theory in fuzzy metric spaces. (English) Zbl 07088760 Arch. Math., Brno 55, No. 2, 83-96 (2019). MSC: 54H25 47H05 47H09 47H10 PDF BibTeX XML Cite \textit{M. H. M. Rashid}, Arch. Math., Brno 55, No. 2, 83--96 (2019; Zbl 07088760) Full Text: DOI
Öner, T. Some topological properties of fuzzy strong \(\mathrm{b}\)-metric spaces. (English) Zbl 1438.54061 J. Linear Topol. Algebra 8, No. 2, 127-131 (2019). MSC: 54A40 54E50 PDF BibTeX XML Cite \textit{T. Öner}, J. Linear Topol. Algebra 8, No. 2, 127--131 (2019; Zbl 1438.54061) Full Text: Link
Dutta, P. N.; Choudhury, Binayak S.; Das, Pradyut Fixed point for mappings satisfying Kannan type inequality in fuzzy metric spaces involving \(\mathrm{t}\)-norms with equi-continuous iterates. (English) Zbl 1449.54058 J. Nonlinear Anal. Optim. 10, No. 1, 11-20 (2019). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{P. N. Dutta} et al., J. Nonlinear Anal. Optim. 10, No. 1, 11--20 (2019; Zbl 1449.54058) Full Text: Link
Chauhan, Surjeet Singh; Imdad, Mohammad; Kaur, Gurjeet; Sharma, Anupam Some fixed point theorems for \(S_F\)-contraction in complete fuzzy metric spaces. (English) Zbl 1438.74067 Afr. Mat. 30, No. 3-4, 651-662 (2019). MSC: 74H10 54H25 PDF BibTeX XML Cite \textit{S. S. Chauhan} et al., Afr. Mat. 30, No. 3--4, 651--662 (2019; Zbl 1438.74067) Full Text: DOI
Gupta, Vishal; Shatanawi, Wasfi; Verma, Manu Existence of fixed points for \(\mathcal{J}\)-\(\psi \)-fuzzy contractions in fuzzy metric spaces endowed with graph. (English) Zbl 1415.54024 J. Anal. 27, No. 2, 417-427 (2019). MSC: 54H25 47H10 54A40 PDF BibTeX XML Cite \textit{V. Gupta} et al., J. Anal. 27, No. 2, 417--427 (2019; Zbl 1415.54024) Full Text: DOI
Gupta, Vishal; Singh, Balbir; Kumar, Sanjay; Tripathi, Adesh Kumar On variants of compatible mappings in fuzzy metric spaces and related fixed point theorems. (English) Zbl 07048956 J. Anal. 27, No. 1, 197-208 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. Gupta} et al., J. Anal. 27, No. 1, 197--208 (2019; Zbl 07048956) Full Text: DOI
Sharma, Varsha Common fixed point theorem in intuitionistic fuzzy metric space using (CLRg) property. (English) Zbl 1411.54017 Electron. J. Math. Analysis Appl. 7, No. 2, 122-131 (2019). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 47H10 54A40 PDF BibTeX XML Cite \textit{V. Sharma}, Electron. J. Math. Analysis Appl. 7, No. 2, 122--131 (2019; Zbl 1411.54017) Full Text: Link
Samei, Mohammad Esmael Some fixed point results on intuitionistic fuzzy metric spaces with a graph. (English) Zbl 1412.34105 Sahand Commun. Math. Anal. 13, No. 1, 141-152 (2019). MSC: 34B24 34B27 PDF BibTeX XML Cite \textit{M. E. Samei}, Sahand Commun. Math. Anal. 13, No. 1, 141--152 (2019; Zbl 1412.34105) Full Text: DOI
Subramanian, N. The Cesàro convergence of triple chi sequence spaces of fuzzy real numbers defined by a sequence of Musielak-Orlicz function. (English) Zbl 1413.40011 Bol. Soc. Parana. Mat. (3) 37, No. 2, 145-155 (2019). MSC: 40E05 26E50 PDF BibTeX XML Cite \textit{N. Subramanian}, Bol. Soc. Parana. Mat. (3) 37, No. 2, 145--155 (2019; Zbl 1413.40011) Full Text: Link
Sharma, Varsha Common fixed point theorem for compatible mappings of type (A-1) in fuzzy metric space. (English) Zbl 1406.54031 Palest. J. Math. 8, No. 1, 312-317 (2019). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{V. Sharma}, Palest. J. Math. 8, No. 1, 312--317 (2019; Zbl 1406.54031) Full Text: Link
Al-Mazrooei, Abdullah Eqal; Ahmad, Jamshaid Fuzzy fixed point results of generalized almost F-contraction. (English) Zbl 1427.54042 J. Math. Comput. Sci., JMCS 18, No. 2, 206-215 (2018). MSC: 54H25 47H10 54A40 PDF BibTeX XML Cite \textit{A. E. Al-Mazrooei} and \textit{J. Ahmad}, J. Math. Comput. Sci., JMCS 18, No. 2, 206--215 (2018; Zbl 1427.54042) Full Text: DOI
Patir, Bijoy; Goswami, Nilakshi; Mishra, Lakshmi Narayan Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions. (English) Zbl 07139752 Korean J. Math. 26, No. 2, 307-326 (2018). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{B. Patir} et al., Korean J. Math. 26, No. 2, 307--326 (2018; Zbl 07139752) Full Text: DOI
Lu, Ning; He, Fei; Fan, Jingjing Fixed point theorems for cyclic \(\varphi \)-contractive mappings in fuzzy metric spaces. (Chinese. English summary) Zbl 1438.54141 Math. Pract. Theory 48, No. 22, 237-248 (2018). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{N. Lu} et al., Math. Pract. Theory 48, No. 22, 237--248 (2018; Zbl 1438.54141)
Sarma, K. K. M.; Gebru, Yohannes Generalization of fixed point results for \((\alpha^*,\eta^*,\psi)\)-contractive mappings in fuzzy metric spaces. (English) Zbl 1438.54158 J. Int. Math. Virtual Inst. 8, 87-102 (2018). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{K. K. M. Sarma} and \textit{Y. Gebru}, J. Int. Math. Virtual Inst. 8, 87--102 (2018; Zbl 1438.54158) Full Text: DOI
Kumam, Wiyada; Sukprasert, Pakeeta; Kumam, Poom; Shoaib, Abdullah; Shahzad, Aqeel; Mahmood, Qasim Some fuzzy fixed point results for fuzzy mappings in complete \(b\)-metric spaces. (English) Zbl 1438.54138 Cogent Math. Stat. 5, Article ID 1458933, 12 p. (2018). MSC: 54H25 54A40 03E72 54E40 PDF BibTeX XML Cite \textit{W. Kumam} et al., Cogent Math. Stat. 5, Article ID 1458933, 12 p. (2018; Zbl 1438.54138) Full Text: DOI
Sharma, Ashutosh; Chouhan, Virendra Singh Result on fixed point theorem in \(\varepsilon\)-chainable fuzzy metric space. (English) Zbl 07094598 JP J. Fixed Point Theory Appl. 13, No. 2, 73-83 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. Sharma} and \textit{V. S. Chouhan}, JP J. Fixed Point Theory Appl. 13, No. 2, 73--83 (2018; Zbl 07094598) Full Text: DOI
Sayed, A. F.; Ahmad, Jamshaid Fixed point theorems for fuzzy soft contractive mappings in fuzzy soft metric spaces. (English) Zbl 1423.54100 Ital. J. Pure Appl. Math. 40, 200-214 (2018). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{A. F. Sayed} and \textit{J. Ahmad}, Ital. J. Pure Appl. Math. 40, 200--214 (2018; Zbl 1423.54100) Full Text: Link
Alolaiyan, Hanan; Saleem, Naeem; Abbas, Mujahid A natural selection of a graphic contraction transformation in fuzzy metric spaces. (English) Zbl 1449.54049 J. Nonlinear Sci. Appl. 11, No. 2, 218-227 (2018). MSC: 54H25 54A40 54E40 54C65 PDF BibTeX XML Cite \textit{H. Alolaiyan} et al., J. Nonlinear Sci. Appl. 11, No. 2, 218--227 (2018; Zbl 1449.54049) Full Text: DOI
Vandana; Deepmala; Subramanian, N.; Mishra, Vishnu Narayan The intuitionistic triple \(\chi\) of ideal fuzzy real numbers over \(p\)-metric spaces defined by Musielak Orlicz function. (English) Zbl 1415.40003 Asia Pac. J. Math. 5, No. 1, 1-13 (2018). MSC: 40A05 40C05 46A45 03E72 PDF BibTeX XML Cite \textit{Vandana} et al., Asia Pac. J. Math. 5, No. 1, 1--13 (2018; Zbl 1415.40003) Full Text: Link
Gupta, Vishal; Kanwar, Ashima; Mani, Naveen Fixed point results for cyclic (\(\alpha \circ \beta\))-contraction in fuzzy metric spaces. (English) Zbl 07056010 Proc. Jangjeon Math. Soc. 21, No. 4, 709-717 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. Gupta} et al., Proc. Jangjeon Math. Soc. 21, No. 4, 709--717 (2018; Zbl 07056010) Full Text: DOI
Hassanzadeh, Zeinab; Sedghi, Shaban; Kim, Jong Kyu Common fixed point theorem for the \(R\)-weakly commuting mappings in \(\mathcal M\)-fuzzy metric spaces. (English) Zbl 1425.54025 Nonlinear Funct. Anal. Appl. 23, No. 4, 629-641 (2018). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{Z. Hassanzadeh} et al., Nonlinear Funct. Anal. Appl. 23, No. 4, 629--641 (2018; Zbl 1425.54025)
Sadabadi, Negar Bakhshi; Haghi, Robab Hamlbarani Fixed point theorems of integral contraction type mappings in fuzzy metric space. (English) Zbl 07044638 S\(\vec{\text{e}}\)MA J. 75, No. 3, 445-456 (2018). MSC: 47H10 47H07 PDF BibTeX XML Cite \textit{N. B. Sadabadi} and \textit{R. H. Haghi}, S\(\vec{\text{e}}\)MA J. 75, No. 3, 445--456 (2018; Zbl 07044638) Full Text: DOI
Gupta, Vishal; Deep, Raman; Tripathi, Adesh Kumar Some common fixed point theorems in fuzzy metric spaces and their applications. (English) Zbl 1424.54086 Bol. Soc. Parana. Mat. (3) 36, No. 3, 141-153 (2018). MSC: 54H25 47H10 55M20 PDF BibTeX XML Cite \textit{V. Gupta} et al., Bol. Soc. Parana. Mat. (3) 36, No. 3, 141--153 (2018; Zbl 1424.54086) Full Text: Link
Esi, A.; Esi, A.; Aiyub, M.; Subramanian, N. The triple sequence spaces of \(\chi_{f\lambda}^{3I(F)\Delta^m}\) of fuzzy numbers defined by a sequence of Musielak-Orlicz functions. (English) Zbl 1409.46047 J. Fuzzy Math. 26, No. 4, 911-930 (2018). MSC: 46S40 46A45 PDF BibTeX XML Cite \textit{A. Esi} et al., J. Fuzzy Math. 26, No. 4, 911--930 (2018; Zbl 1409.46047)
Priskillal, J. Jeyachristy; Thangavelu, P. Some new fixed fuzzy point theorems in Hausdorff fuzzy metric spaces. (English) Zbl 1409.54019 J. Fuzzy Math. 26, No. 4, 871-880 (2018). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{J. J. Priskillal} and \textit{P. Thangavelu}, J. Fuzzy Math. 26, No. 4, 871--880 (2018; Zbl 1409.54019)
Hezarjaribi, Masoomeh Meir-Keeler type contraction mappings in \(c_0\)-triangular fuzzy metric spaces. (English) Zbl 1412.34103 Sahand Commun. Math. Anal. 11, No. 1, 25-41 (2018). MSC: 34B24 34B27 PDF BibTeX XML Cite \textit{M. Hezarjaribi}, Sahand Commun. Math. Anal. 11, No. 1, 25--41 (2018; Zbl 1412.34103) Full Text: DOI
Beg, Ismat; Ahmed, M.; Nafadi, N. (JCLR) property and fixed point in non-Archimedean fuzzy metric spaces. (English) Zbl 1412.47101 Int. J. Nonlinear Anal. Appl. 9, No. 1, 195-201 (2018). MSC: 47H10 47H04 54H25 46S40 PDF BibTeX XML Cite \textit{I. Beg} et al., Int. J. Nonlinear Anal. Appl. 9, No. 1, 195--201 (2018; Zbl 1412.47101) Full Text: DOI
Hezarjaribi, Masoomeh Fixed point results in orthogonal fuzzy metric spaces. (English) Zbl 1407.46060 Jordan J. Math. Stat. 11, No. 4, 295-308 (2018). MSC: 46N40 47H10 54H25 46T99 PDF BibTeX XML Cite \textit{M. Hezarjaribi}, Jordan J. Math. Stat. 11, No. 4, 295--308 (2018; Zbl 1407.46060) Full Text: Link
Beloul, Said Common fixed point theorems for weakly subsequentially continuous mappings in fuzzy metric spaces via implicit relation. (English) Zbl 07015137 TWMS J. Appl. Eng. Math. 8, No. 1A, 284-294 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Beloul}, TWMS J. Appl. Eng. Math. 8, No. 1A, 284--294 (2018; Zbl 07015137)
Samei, M. E. Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space. (English) Zbl 1424.54099 J. Linear Topol. Algebra 7, No. 3, 183-199 (2018). MSC: 54H25 54E40 54A40 PDF BibTeX XML Cite \textit{M. E. Samei}, J. Linear Topol. Algebra 7, No. 3, 183--199 (2018; Zbl 1424.54099) Full Text: Link
Paknazar, Mohadeseh Non-Archimedean fuzzy metric spaces and best proximity point theorems. (English) Zbl 1413.54155 Sahand Commun. Math. Anal. 9, No. 1, 85-112 (2018). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{M. Paknazar}, Sahand Commun. Math. Anal. 9, No. 1, 85--112 (2018; Zbl 1413.54155) Full Text: DOI
Wu, Hsien-Chung Convergence in fuzzy semi-metric spaces. (English) Zbl 1405.54004 Mathematics 6, No. 9, Paper No. 170, 39 p. (2018). MSC: 54A40 54H25 PDF BibTeX XML Cite \textit{H.-C. Wu}, Mathematics 6, No. 9, Paper No. 170, 39 p. (2018; Zbl 1405.54004) Full Text: DOI
Deshpande, Bhavana; Thoker, Shamim Ahmad Multidimensional fixed point theorems in partially ordered complete modified intuitionistic fuzzy metric spaces. (English) Zbl 1402.54038 J. Fuzzy Math. 26, No. 1, 203-218 (2018). MSC: 54H25 54A40 54A35 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{S. A. Thoker}, J. Fuzzy Math. 26, No. 1, 203--218 (2018; Zbl 1402.54038)
Jha, Kanhaiya Generalized common fixed point result in fuzzy metric space. (English) Zbl 1402.54040 J. Fuzzy Math. 26, No. 1, 129-137 (2018). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{K. Jha}, J. Fuzzy Math. 26, No. 1, 129--137 (2018; Zbl 1402.54040)
Jäger, Gunther; Yao, Wei Quantale-valued gauge spaces. (English) Zbl 1398.54019 Iran. J. Fuzzy Syst. 15, No. 1, 103-122 (2018). MSC: 54A40 54A35 06F07 PDF BibTeX XML Cite \textit{G. Jäger} and \textit{W. Yao}, Iran. J. Fuzzy Syst. 15, No. 1, 103--122 (2018; Zbl 1398.54019) Full Text: DOI
Lv, Yingxia; Ji, Peisheng Fuzzy generalized \(H\)-weak contractive mapping in fuzzy metric space. (Chinese. English summary) Zbl 1413.54139 J. Yangzhou Univ., Nat. Sci. Ed. 21, No. 1, 3-6 (2018). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{Y. Lv} and \textit{P. Ji}, J. Yangzhou Univ., Nat. Sci. Ed. 21, No. 1, 3--6 (2018; Zbl 1413.54139) Full Text: DOI
Shukla, Satish; Gopal, Dhananjay; Sintunavarat, Wutiphol A new class of fuzzy contractive mappings and fixed point theorems. (English) Zbl 1397.54057 Fuzzy Sets Syst. 350, 85-94 (2018). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{S. Shukla} et al., Fuzzy Sets Syst. 350, 85--94 (2018; Zbl 1397.54057) Full Text: DOI
Kumar, Pawan; Singh, Balbir; Ansari, Z. K. Variants of compatible mappings in fuzzy metric spaces. (English) Zbl 06928950 Ann. Fuzzy Math. Inform. 15, No. 2, 169-180 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{P. Kumar} et al., Ann. Fuzzy Math. Inform. 15, No. 2, 169--180 (2018; Zbl 06928950) Full Text: DOI
Sayed, A. F.; Alahmari, A. Fuzzy soft \(\alpha-\psi\)-contractive type mappings and some fixed point theorems in fuzzy soft metric spaces. (English) Zbl 1394.54007 Ann. Fuzzy Math. Inform. 15, No. 1, 73-87 (2018). MSC: 54A40 54E35 54H25 PDF BibTeX XML Cite \textit{A. F. Sayed} and \textit{A. Alahmari}, Ann. Fuzzy Math. Inform. 15, No. 1, 73--87 (2018; Zbl 1394.54007) Full Text: Link
Beg, I.; Gopal, D.; Došenović, T.; Rakić, D. \(\alpha\)-type fuzzy \(H\)-contractive mappings in fuzzy metric spaces. (English) Zbl 06918892 Fixed Point Theory 19, No. 2, 463-474 (2018). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{I. Beg} et al., Fixed Point Theory 19, No. 2, 463--474 (2018; Zbl 06918892) Full Text: Link
Shukla, Satish; Rodríguez-López, Rosana; Abbas, Mujahid Fixed point results for contractive mappings in complex valued fuzzy metric spaces. (English) Zbl 1397.54058 Fixed Point Theory 19, No. 2, 751-774 (2018). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. Shukla} et al., Fixed Point Theory 19, No. 2, 751--774 (2018; Zbl 1397.54058) Full Text: Link
Wu, Hsien-Chung Common coincidence points and common fixed points in fuzzy semi-metric spaces. (English) Zbl 06916903 Mathematics 6, No. 2, Paper No. 29, 21 p. (2018). MSC: 26 51 54 PDF BibTeX XML Cite \textit{H.-C. Wu}, Mathematics 6, No. 2, Paper No. 29, 21 p. (2018; Zbl 06916903) Full Text: DOI
Rashid, Malik H. M. Minimax theorems in fuzzy metric spaces. (English) Zbl 1405.49005 Comput. Appl. Math. 37, No. 2, 1703-1720 (2018). MSC: 49J35 49J40 47J20 54A40 PDF BibTeX XML Cite \textit{M. H. M. Rashid}, Comput. Appl. Math. 37, No. 2, 1703--1720 (2018; Zbl 1405.49005) Full Text: DOI
Alar, Rabia; Yiğit, Ebru; Erduran, Ferhan Şola; Gezici, Ayten On soft fuzzy metric spaces and topological structure. (English) Zbl 1398.54012 J. Adv. Stud. Topol. 9, No. 1, 61-70 (2018). MSC: 54A40 PDF BibTeX XML Cite \textit{R. Alar} et al., J. Adv. Stud. Topol. 9, No. 1, 61--70 (2018; Zbl 1398.54012) Full Text: DOI
Gregori, Valentín; Miñana, Juan-José; Sapena, Almanzor On Banach contraction principles in fuzzy metric spaces. (English) Zbl 1398.54069 Fixed Point Theory 19, No. 1, 235-248 (2018). Reviewer: Bhavana Deshpande (Ratlam) MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{V. Gregori} et al., Fixed Point Theory 19, No. 1, 235--248 (2018; Zbl 1398.54069) Full Text: DOI
Jäger, Gunther; Ahsanullah, T. M. G. Characterization of quantale-valued metric spaces and quantale-valued partial metric spaces by convergence. (English) Zbl 1395.54005 Appl. Gen. Topol. 19, No. 1, 129-144 (2018). Reviewer: Heinz-Peter Butzmann (Mannheim) MSC: 54A20 54A40 54E35 54E70 PDF BibTeX XML Cite \textit{G. Jäger} and \textit{T. M. G. Ahsanullah}, Appl. Gen. Topol. 19, No. 1, 129--144 (2018; Zbl 1395.54005) Full Text: DOI Link
Long, Hoang Viet; Nieto, Juan José; Son, Nguyen Thi Kim New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric spaces. (English) Zbl 1387.35612 Fuzzy Sets Syst. 331, 26-46 (2018). MSC: 35R13 PDF BibTeX XML Cite \textit{H. V. Long} et al., Fuzzy Sets Syst. 331, 26--46 (2018; Zbl 1387.35612) Full Text: DOI
Gutiérrez García, Javier; Rodríguez-López, Jesús; Romaguera, Salvador On fuzzy uniformities induced by a fuzzy metric space. (English) Zbl 1380.54007 Fuzzy Sets Syst. 330, 52-78 (2018). MSC: 54A40 54E35 54E15 PDF BibTeX XML Cite \textit{J. Gutiérrez García} et al., Fuzzy Sets Syst. 330, 52--78 (2018; Zbl 1380.54007) Full Text: DOI
Sánchez, Iván; Sanchis, Manuel Complete invariant fuzzy metrics on groups. (English) Zbl 1380.54011 Fuzzy Sets Syst. 330, 41-51 (2018). MSC: 54A40 54H11 54E35 PDF BibTeX XML Cite \textit{I. Sánchez} and \textit{M. Sanchis}, Fuzzy Sets Syst. 330, 41--51 (2018; Zbl 1380.54011) Full Text: DOI
Gregori, Valentín; Miñana, Juan-José; Valero, Oscar A technique for fuzzifying metric spaces via metric preserving mappings. (English) Zbl 1380.54006 Fuzzy Sets Syst. 330, 1-15 (2018). MSC: 54A40 54E35 PDF BibTeX XML Cite \textit{V. Gregori} et al., Fuzzy Sets Syst. 330, 1--15 (2018; Zbl 1380.54006) Full Text: DOI
Shoaib, Abdullah; Kumam, Poom; Shahzad, Aqeel; Phiangsungnoen, Supak; Mahmood, Qasim Fixed point results for fuzzy mappings in a b-metric space. (English) Zbl 1379.54038 Fixed Point Theory Appl. 2018, Paper No. 2, 12 p. (2018). MSC: 54H25 54A40 54E40 54E50 PDF BibTeX XML Cite \textit{A. Shoaib} et al., Fixed Point Theory Appl. 2018, Paper No. 2, 12 p. (2018; Zbl 1379.54038) Full Text: DOI
Shoaib, Abdullah; Nisar, Zubair; Hussain, Aftab; Özer, Özen; Arshad, Muhammad Modified Banach fixed point results for locally contractive mappings in complete \(G_d\)-metric like space. (English) Zbl 06779734 Electron. J. Math. Analysis Appl. 6, No. 1, 144-155 (2018). MSC: 46S40 47H10 54H25 PDF BibTeX XML Cite \textit{A. Shoaib} et al., Electron. J. Math. Analysis Appl. 6, No. 1, 144--155 (2018; Zbl 06779734) Full Text: Link
Priskillal, J. Jeyachristy; Thangavelu, P. A new common fixed point theorem in intuistionistic fuzzy metric spaces. (English) Zbl 1371.54185 Electron. J. Math. Analysis Appl. 6, No. 1, 109-116 (2018). MSC: 54H25 54E70 54A40 PDF BibTeX XML Cite \textit{J. J. Priskillal} and \textit{P. Thangavelu}, Electron. J. Math. Analysis Appl. 6, No. 1, 109--116 (2018; Zbl 1371.54185) Full Text: Link
Jeyaraman, M.; Muthuraj, R.; Sornavalli, M.; Manro, S. Common fixed point theorem in dislocated generalized intuitionist fuzzy metric space. (English) Zbl 1412.47133 Bull. Int. Math. Virtual Inst. 7, No. 3, 437-444 (2017). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Jeyaraman} et al., Bull. Int. Math. Virtual Inst. 7, No. 3, 437--444 (2017; Zbl 1412.47133) Full Text: DOI
Rehman, Saif Ur; Li, Hong-Xu Fixed point theorems in fuzzy cone metric spaces. (English) Zbl 1412.47181 J. Nonlinear Sci. Appl. 10, No. 11, 5763-5769 (2017). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. U. Rehman} and \textit{H.-X. Li}, J. Nonlinear Sci. Appl. 10, No. 11, 5763--5769 (2017; Zbl 1412.47181) Full Text: DOI
Zhao, Haiqing; Lu, Yanxia; Sridarat, Phikul; Suantai, Suthep; Cho, Yeol Je Common fixed point theorems in non-Archimedean fuzzy metric-like spaces with applications. (English) Zbl 1412.47046 J. Nonlinear Sci. Appl. 10, No. 7, 3708-3718 (2017). MSC: 47H05 47H09 54H25 PDF BibTeX XML Cite \textit{H. Zhao} et al., J. Nonlinear Sci. Appl. 10, No. 7, 3708--3718 (2017; Zbl 1412.47046) Full Text: DOI
Eminoğlu, Şehla; Çevik, Cüneyt Fuzzy vector metric spaces and some results. (English) Zbl 1412.54018 J. Nonlinear Sci. Appl. 10, No. 7, 3429-3436 (2017). MSC: 54A40 54E35 06F20 46A40 PDF BibTeX XML Cite \textit{Ş. Eminoğlu} and \textit{C. Çevik}, J. Nonlinear Sci. Appl. 10, No. 7, 3429--3436 (2017; Zbl 1412.54018) Full Text: DOI
Song, Ming-Liang Common fixed point for fuzzy mappings satisfying an implicit \(\varphi\)-contractive conditions in complete metric spaces. (English) Zbl 1412.47177 J. Nonlinear Sci. Appl. 10, No. 6, 3344-3356 (2017). MSC: 47H10 54H25 54A40 46A40 PDF BibTeX XML Cite \textit{M.-L. Song}, J. Nonlinear Sci. Appl. 10, No. 6, 3344--3356 (2017; Zbl 1412.47177) Full Text: DOI
Ahmad, Jamshaid; Al-Mazrooei, Abdullah E.; Cho, Yeol Je; Yang, Young-Oh Fixed point results for generalized \(\Theta\)-contractions. (English) Zbl 1412.46088 J. Nonlinear Sci. Appl. 10, No. 5, 2350-2358 (2017). MSC: 46S40 47H10 54H25 PDF BibTeX XML Cite \textit{J. Ahmad} et al., J. Nonlinear Sci. Appl. 10, No. 5, 2350--2358 (2017; Zbl 1412.46088) Full Text: DOI
Jin, Jiaming; Zhu, Chuanxi; Wu, Zhaoqi; Wu, Haochen Some results for common fixed point on \(\varphi\)-contractions in \(k\)-partially ordered fuzzy metric space. (English) Zbl 1412.54021 J. Nonlinear Sci. Appl. 10, No. 4, 2052-2065 (2017). MSC: 54A40 54H25 PDF BibTeX XML Cite \textit{J. Jin} et al., J. Nonlinear Sci. Appl. 10, No. 4, 2052--2065 (2017; Zbl 1412.54021) Full Text: DOI
Gao, You; Li, Qingguo; Guo, Lankun; Xie, Jialiang Formal balls in fuzzy quasi-metric spaces. (English) Zbl 1412.54019 J. Nonlinear Sci. Appl. 10, No. 2, 684-698 (2017). MSC: 54A40 54E35 PDF BibTeX XML Cite \textit{Y. Gao} et al., J. Nonlinear Sci. Appl. 10, No. 2, 684--698 (2017; Zbl 1412.54019) Full Text: DOI
Tchier, Fairouz; Vetro, Calogero; Vetro, Francesca From fuzzy metric spaces to modular metric spaces: a fixed point approach. (English) Zbl 1412.54060 J. Nonlinear Sci. Appl. 10, No. 2, 451-464 (2017). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{F. Tchier} et al., J. Nonlinear Sci. Appl. 10, No. 2, 451--464 (2017; Zbl 1412.54060) Full Text: DOI
Latif, Abdul; Saleem, Naeem; Abbas, Mujahid \(\alpha\)-optimal best proximity point result involving proximal contraction mappings in fuzzy metric spaces. (English) Zbl 1412.47146 J. Nonlinear Sci. Appl. 10, No. 1, 92-103 (2017). MSC: 47H10 47H04 47H07 PDF BibTeX XML Cite \textit{A. Latif} et al., J. Nonlinear Sci. Appl. 10, No. 1, 92--103 (2017; Zbl 1412.47146) Full Text: DOI
Azam, Akbar; Tabassum, Rehana Fixed point theorems of intuitionistic fuzzy mappings in quasi-pseudo metric spaces. (English) Zbl 07041511 Bull. Math. Anal. Appl. 9, No. 4, 42-57 (2017). MSC: 47H10 54H25 47S40 PDF BibTeX XML Cite \textit{A. Azam} and \textit{R. Tabassum}, Bull. Math. Anal. Appl. 9, No. 4, 42--57 (2017; Zbl 07041511) Full Text: Link
Shayanpour, Hamid; Nematizadeh, Asiyeh Some results on common best proximity point in fuzzy metric spaces. (English) Zbl 1438.54162 Bol. Soc. Parana. Mat. (3) 35, No. 2, 177-194 (2017). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{H. Shayanpour} and \textit{A. Nematizadeh}, Bol. Soc. Parana. Mat. (3) 35, No. 2, 177--194 (2017; Zbl 1438.54162) Full Text: Link
Liu, Zhouzhou Fuzzy logic and rough sets. (Chinese. English summary) Zbl 1424.03007 Fuzzy Syst. Math. 31, No. 3, 168-174 (2017). MSC: 03B52 03E72 68T37 PDF BibTeX XML Cite \textit{Z. Liu}, Fuzzy Syst. Math. 31, No. 3, 168--174 (2017; Zbl 1424.03007)
Fard, Omid S.; Bidgoli, T. A. Existence and uniqueness of solutions to the second order fuzzy dynamic equations on time scales. (English) Zbl 1422.34256 Adv. Difference Equ. 2017, Paper No. 231, 17 p. (2017). MSC: 34N05 34A07 PDF BibTeX XML Cite \textit{O. S. Fard} and \textit{T. A. Bidgoli}, Adv. Difference Equ. 2017, Paper No. 231, 17 p. (2017; Zbl 1422.34256) Full Text: DOI
Ali, A. Mohamed Some fixed point theorems in intuitionistic fuzzy 2-metric space using implicit relation. (English) Zbl 1400.54050 J. Fuzzy Math. 25, No. 4, 853-863 (2017). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{A. M. Ali}, J. Fuzzy Math. 25, No. 4, 853--863 (2017; Zbl 1400.54050)
Gupta, Vishal; Verma, Manu; Khan, M. S. Common fixed point in generalized fuzzy metric spaces. (English) Zbl 1400.54055 J. Fuzzy Math. 25, No. 3, 533-541 (2017). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{V. Gupta} et al., J. Fuzzy Math. 25, No. 3, 533--541 (2017; Zbl 1400.54055)