×

Links between dissipation, intermittency, and helicity in the GOY model revisited. (English) Zbl 1099.76024

Summary: High-resolution simulations within the GOY shell model are used to study various scaling relations for turbulence. We confirm a power-law relation between the second-order intermittency correction and the crossover from the inertial to the dissipation range. Evidence is found for the intermediate viscous dissipation range proposed by U. Frisch and M. Vergassola [Europhys. Lett. 14, 439–444 (1991)]. It is emphasized that insufficient dissipation-range resolution systematically drives the energy spectrum towards statistical mechanical equipartition. In fully resolved simulations the inertial-range scaling exponents depend on both model parameters; in particular, there is no evidence that the conservation of a helicity-like quantity leads to universal exponents.

MSC:

76F02 Fundamentals of turbulence

Software:

RODAS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bell, T.; Nelkin, M., Nonlinear cascade models for fully developed turbulence, Phys. Fluids, 20, 345-350 (1977) · Zbl 0369.76052
[2] Benzi, R.; Horesh, N.; Procaccia, I., Shell model of two-dimensional turbulence in polymer solutions, Europhys. Lett., 68, 310-315 (2004)
[3] Beylkin, G.; Keiser, J. M.; Vozovoi, L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147, 362-387 (1998) · Zbl 0924.65089
[4] Biferale, L., Shell models of energy cascade in turbulence, Annu. Rev. Fluid Mech., 35, 441-468 (2003) · Zbl 1041.76037
[5] Biferale, L.; Lambert, A.; Lima, R.; Paladin, G., Transition to chaos in a shell model of turbulence, Physica D, 80, 105-119 (1995) · Zbl 0899.76241
[6] Biskamp, D., Cascade models for magnetohydrodynamic turbulence, Phys. Rev. E, 50, 2702-2711 (1994)
[7] Boffetta, G.; Celani, A.; Roagna, D., Energy dissipation statistics in a shell model of turbulence, Phys. Rev. E, 61, 3234-3236 (2000)
[8] Boffetta, G.; Romano, G., Structure functions and energy dissipation dependence on Reynolds number, Phys. Fluids, 41, 3453-3458 (2002) · Zbl 1185.76058
[9] Bogacki, P.; Shampine, L. F., A 3(2) pair of Runge-Kutta formulas, Appl. Math. Lett., 2, 1-9 (1989) · Zbl 0705.65055
[10] Bohr, T.; Jensen, M.; Paladin, G.; Vulpiani, A., Dynamical Systems Approach to Turbulence (1998), Cambridge University Press · Zbl 0933.76002
[11] J.C. Bowman, M. Roberts, An adaptive exponential integrator, J. Comput. Phys. (2006) (submitted for publication); J.C. Bowman, M. Roberts, An adaptive exponential integrator, J. Comput. Phys. (2006) (submitted for publication)
[12] Bowman, J. C.; Shadwick, B. A.; Morrison, P. J., Exactly conservative integrators, (Sydow, A., 15th IMACS World Congress on Scientific Computation. 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, vol. 2 (August 1997), Wissenschaft & Technik: Wissenschaft & Technik Berlin), 595-600 · Zbl 0946.65130
[13] Certaine, J., The solution of ordinary differential equations with large time constants, Math. Meth. Dig. Comp., 129-132 (1960)
[14] Chevillard, L.; Castaing, B.; Lévêque, E., On the rapid increase of intermittency in the near-dissipation range of fully developed turbulence, Eur. Phys. J. B, 45, 561-567 (2005)
[15] Cox, S.; Matthews, P., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[16] Eggers, J.; Grossmann, S., Does deterministic chaos imply intermittency in fully developed turbulence?, Phys. Fluids A, 3, 1985 (1991) · Zbl 0746.76056
[17] Eggers, J.; Grossmann, S., Effect of dissipation fluctuations on anomalous velocity scaling in turbulence, Phys. Rev. A, 45, 2360 (1992)
[18] Esser, A.; Grossmann, S., Nonperturbative renormalization group approach to turbulence, Eur. Phys. J. B, 7, 467-482 (1999)
[19] Falkovich, G., Bottleneck phenomenon in developed turbulence, Phys. Fluids, 6, 1411-1414 (1994) · Zbl 0865.76030
[20] Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov (1995), Cambridge University Press
[21] Frisch, U.; Vergassola, M., A prediction of the multifractal model: The intermediate dissipation range, Europhys. Lett., 14, 439-444 (1991)
[22] Gledzer, E., System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18, 216 (1973) · Zbl 0292.76038
[23] Grossmann, S.; Lohse, D., Scale resolved intermittency in turbulence, Phys. Fluids, 6, 611 (1994)
[24] Grossmann, S.; Lohse, D., Universality in fully developed turbulence, Phys. Rev. E, 50, 2784-2789 (1994)
[25] Grossmann, S.; Lohse, D.; Reeh, A., Developed turbulence: From full simulations to full mode reductions, Phys. Rev. Lett., 77, 5369-5372 (1996)
[26] Hairer, E.; Nørsett, S.; Wanner, G., (Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Comput. Math., vol. 14 (1991), Springer: Springer Berlin) · Zbl 0729.65051
[27] Herweijer, J.; van de Water, W., Universal shape of scaling functions in turbulence, Phys. Rev. Lett., 74, 4651-4654 (1995)
[28] Hochbruck, M.; Lubich, C.; Selfhofer, H., Explicit integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 1552-1574 (1998) · Zbl 0912.65058
[29] Hochbruck, M.; Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 1069-1090 (2005) · Zbl 1093.65052
[30] Jensen, M., Shell model for turbulent advection of passive-scalar fields, Phys. Rev. A, 45, 7214-7221 (1992)
[31] Kadanoff, L. P.; Lohse, D.; Wang, J.; Benzi, R., Scaling and dissipation in the GOY shell model, Phys. Fluids, 7, 617-629 (1995) · Zbl 1039.76508
[32] Kolmogorov, A., Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers, Dokl. Acad. Nauk SSSR. Dokl. Acad. Nauk SSSR, Proc. R. Soc. Lond. A, 434, 9-13 (1991), (reprinted) · Zbl 1142.76389
[33] Kotovych, O.; Bowman, J. C., An exactly conservative integrator for the \(n\)-body problem, J. Phys. A.: Math. Gen., 35, 7849-7863 (2002) · Zbl 1168.70309
[34] Lévêque, E.; Koudella, C. R., Finite-mode spectral model of homogeneous and isotropic Navier-Stokes turbulence: A rapidly depleted energy cascade, Phys. Rev. Lett., 86, 4033-4036 (2001)
[35] Leveque, E.; She, Z., Viscous effects on inertial range scaling in a dynamical model of turbulence, Phys. Rev. Lett., 75, 2690-2693 (1995)
[36] Lohse, D.; Müller-Groeling, A., Bottleneck effects in turbulence: Scaling phenomena in r- versus p-space, Phys. Rev. Lett., 74, 1747-1750 (1995)
[37] Lohse, D.; Müller-Groeling, A., Anisotropy and scaling corrections in turbulence, Phys. Rev. E, 54, 395-405 (1996)
[38] Nakayma, Y.; Watanabe, T.; Fujisaka, H., Self-similar fluctuation and large deviation statistics in the shell model of turbulence, Phys. Rev. E, 64, 1-13, 056304 (2001)
[39] Novikov, E. A., Functionals and the random-force method in turbulence theory, J. Exptl. Theoret. Phys. (U.S.S.R), 47, 1919-1926 (1964)
[40] Ohkitani, K.; Yamada, M., Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model turbulence, Progr. Theoret. Phys., 81, 329 (1989)
[41] Pisarenko, D.; Biferale, L.; Courvoisier, D.; Frisch, U.; Vergassola, M., Further results on multifractality in shell models, Phys. Fluids A, 5, 2533-2538 (1993) · Zbl 0799.76032
[42] Schörghofer, N.; Kadanoff, L. P.; Lohse, D., How the viscous subrange determines inertial range properties in turbulence shell models, Physica D, 88, 40-54 (1995) · Zbl 0899.76244
[43] Schumacher, J.; Sreenivasan, K. R.; Yeung, P. K., Very fine structures in scalar mixing, J. Fluid Mech., 531, 113-122 (2005) · Zbl 1070.76033
[44] Shadwick, B. A.; Bowman, J. C.; Morrison, P. J., Exactly conservative integrators, SIAM J. Appl. Math., 59, 1112-1133 (1999) · Zbl 0946.65130
[45] She, Z.; Leveque, E., Universal scaling laws in fully developed turbulence, Phys. Rev. Lett., 72, 336 (1994)
[46] Siggia, E. D., Origin of intermittency in fully developed turbulence, Phys. Rev. A, 15, 1730-1750 (1977)
[47] Yamada, M.; Ohkitani, K., Lyapunov spectrum of a chaotic model of three-dimensional turbulence, J. Phys. Soc. Japan, 56, 4210-4213 (1987)
[48] Yamada, M.; Ohkitani, K., The inertial subrange and non-positive Lyapunov exponents in fully developed turbulence, Prog. Theor. Phys., 79, 1265 (1988)
[49] Yamada, M.; Ohkitani, K., Lyapunov spectrum of a model of two-dimensional turbulence, Phys. Rev. Lett., 60, 983 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.