×

Weak convergence of the tail empirical process for dependent sequences. (English) Zbl 1162.60017

Let \(\xi_1,\ldots, \xi_n\) be a stationary sequence of random observations fulfilling some mixing condition. For a given threshold \(u_n\) (becoming large) and a scaling factor \(\sigma_n > 0\), the tail empirical distribution function is defined as \(\tilde T_n(x) = \frac{1}{n\bar{F}(u_n)} \sum_{i=1}^n 1_{\{ \xi_i > u_n + x\sigma_n\}}\). Here \(F\) is the marginal distribution of the \(\xi\)’s and \(\bar{F} = 1 - F\) is the associated tail distribution function. The paper provides conditions under which \(\tilde T_n\) properly standardized converges to a Gaussian limit in the Skorokhod space \(D\). An interesting modification considers the situation when \(u_n\) is replaced by appropriate order statistics of the sample.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60F17 Functional limit theorems; invariance principles
62G32 Statistics of extreme values; tail inference

Software:

VaR; ismev
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arcones, M. A.; Yu, B., Central limit theorems for empirical and \(U\)-processes of stationary mixing sequences, J. Theoret. Probab., 7, 47-71 (1994) · Zbl 0786.60028
[2] Beirlant, J.; Segers, J.; Teugels, J., Statistics of Extremes, Theory and Applications (2005), Wiley: Wiley Chichester
[3] Berbee, H., Random Walks with Stationary Increments and Renewal Theory Mathematical Centre Tracts, vol. 112 (1979), Mathematisch Centrum: Mathematisch Centrum Amsterdam · Zbl 0443.60083
[4] Berbee, H., Convergence rates in the strong law for bounded mixing sequences, Probab. Theory Related Fields, 74, 255-270 (1987) · Zbl 0587.60028
[5] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[6] Bradley, R. C., Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surv., 2, 107-144 (2005) · Zbl 1189.60077
[7] Coles, S. G., An Introduction to Statistical Modeling of Extreme Values (2001), Springer: Springer London · Zbl 0980.62043
[8] Csörgö, M.; Csörgö, S.; Horváth, L.; Mason, D. M., Weighted empirical and quantile processes, Ann. Probab., 14, 31-85 (1986) · Zbl 0589.60029
[9] Datta, S.; McCormick, W. P., Inference for the tail parameters of a linear process with heavy tail innovations, Ann. Inst. Statist. Math., 50, 237-359 (1998) · Zbl 0903.62069
[10] Dedecker, J.; Prieur, C., New dependence coefficients. Examples and applications to statistics, Probab. Theory Related Fields, 132, 203-236 (2005) · Zbl 1061.62058
[11] Dedecker, J.; Doukhan, P., A new covariance inequality and applications, Stochastic Process. Appl., 106, 63-80 (2003) · Zbl 1075.60513
[12] Deheuvels, P.; Mason, D. M., Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes, Ann. Probab., 18, 1693-1722 (1990) · Zbl 0719.60030
[13] (Dehling, H.; Mikosch, T.; Sörensen, M., Empirical Process Techniques for Dependent Data (2002), Birkhäuser: Birkhäuser Boston) · Zbl 1005.00016
[14] Drees, H., On smooth tail functionals, Scand J. Statist., 25, 187-210 (1998) · Zbl 0923.62032
[15] Drees, H., Weighted approximations of tail processes for \(\beta \)-mixing random variables, Ann. Appl. Probab., 10, 1274-1301 (2000) · Zbl 1073.60520
[16] Drees, H., Tail empirical processes under mixing conditions, (Dehling, H. G.; Mikosch, T.; Sorensen, M., Empirical Process Techniques for Dependent Data (2002), Birkhäuser: Birkhäuser Boston), 325-342 · Zbl 1021.62038
[17] Drees, H., Extreme quantile estimation for dependent data with applications to finance, Bernoulli, 9, 617-657 (2003) · Zbl 1040.62077
[18] Doukhan, P.; Louhici, S., A new weak dependence condition and applications to moment inequalities, Stoch. Proc. Appl., 84, 313-342 (1999) · Zbl 0996.60020
[19] Doukhan, P.; Massart, P.; Rio, E., Invariance principles for absolutely regular empirical processes, Ann. Inst. Henri Poincaré, 31, 393-427 (1995) · Zbl 0817.60028
[20] Eberlein, E., Weak convergence of partial sums of absolutely regular sequences, Statist. Probab. Lett., 2, 291-293 (1984) · Zbl 0564.60025
[21] Einmahl, J. H.J., Limit theorems for tail processes with application to intermediate quantile estimation, J. Statist. Plan. Inference, 32, 137-145 (1990) · Zbl 0759.60017
[22] Einmahl, J. H.J., The empirical distribution function as a tail estimator, Statist. Neerlandica, 44, 79-82 (1990) · Zbl 0713.62052
[23] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling Extremal Events (1997), Springer: Springer New York · Zbl 0873.62116
[24] J.B. Hill, On tail index estimation using heterogeneous, dependent data. Working paper, Dept. of Economics, Florida International university, 2006; J.B. Hill, On tail index estimation using heterogeneous, dependent data. Working paper, Dept. of Economics, Florida International university, 2006
[25] Hsing, T., On tail estimation using dependent data, Ann. Statist., 19, 1547-1569 (1991) · Zbl 0738.62026
[26] Kotz, S.; Nadarajah, S., Extreme Value Distributions: Theory and Applications (2000), Imperial College Press: Imperial College Press London · Zbl 0960.62051
[27] Kowaka, M., An Introduction to Life Prediction of Plant Materials. Application of Extreme Value Statistical Methods for Corrosion Analysis (1994), Allerton Press: Allerton Press New York
[28] Leadbetter, M. R.; Lindgren, G.; Rootzén, H., Extremes and Related Properties of Random Sequences and Processes (1983), Springer: Springer New York · Zbl 0518.60021
[29] Mason, D. M., A strong invariance principle for the tail empirical process, Ann. Inst. Henri Poincaré, 24, 491-506 (1988) · Zbl 0664.60038
[30] Merlevède, F.; Peligrad, M., Recent advances in invariance principles for stationary sequences, Probab. Surv., 3, 136 (2006)
[31] Novak, S. Y., Inference on heavy tails from dependent data, Siberian Adv. Math., 12, 73-96 (2002) · Zbl 1045.62045
[32] Petrov, V. V., Limit Theorems of Probability Theory, Sequences of Independent Variables (1995), Oxford University Press: Oxford University Press Oxford · Zbl 0826.60001
[33] Pollard, D., Convergence of Stochastic Processes (1984), Springer: Springer New York · Zbl 0544.60045
[34] Reiss, R.; Thomas, M., Statistical Analysis of Extreme Values (for Insurance, Finance, Hydrology and Other Fields) (2005), Birkhäuser: Birkhäuser Basel
[35] Resnick, S.; Stărică, C., Consistency of Hill’s estimator for dependent data, J. Appl. Probab., 32, 139-167 (1995) · Zbl 0836.60020
[36] Resnick, S.; Stărică, C., Asymptotic behavior of the Hill estimator for autoregressive data, Commun. Statist. - Stochastic Models, 13, 703-731 (1997) · Zbl 1047.62079
[37] Resnick, S.; Stărică, C., Tail estimation for dependent data, Ann. Appl. Probab., 8, 1156-1183 (1998) · Zbl 0942.60037
[38] E. Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dependents, Springer series Mathematiques & Applications, vol. 31, Paris, 2000; E. Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dependents, Springer series Mathematiques & Applications, vol. 31, Paris, 2000
[39] H. Rootzén, The tail empirical process for stationary sequences. Technical report, Department of Mathematics, Chalmers University, Sweden, 1995; H. Rootzén, The tail empirical process for stationary sequences. Technical report, Department of Mathematics, Chalmers University, Sweden, 1995
[40] H. Rootzén, M.R. Leadbetter, L. de Haan, Tail and quantile estimation for strongly mixing stationary processes. Report, Department of Statistics, University of North Carolina, 1992; H. Rootzén, M.R. Leadbetter, L. de Haan, Tail and quantile estimation for strongly mixing stationary processes. Report, Department of Statistics, University of North Carolina, 1992
[41] Rootzén, H.; Leadbetter, M. R.; de Haan, L., On the distribution of tail array sums for strongly mixing stationary sequences, Ann. Appl. Probab., 8, 868-885 (1998) · Zbl 0939.60007
[42] Shao, Q. M.; Yu, H., Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab., 24, 2098-2127 (1996) · Zbl 0874.60006
[43] Stephenson, A.; Gilleland, E., Software for the analysis of extreme events: the current status and future directions, Extremes, 8, 3 (2005) · Zbl 1114.62002
[44] Vervaat, W., Functional central limit theorems for processes with positive drift and their inverses, Z. Wahrscheinlichkeitsteorie verw. Geb., 23, 245-253 (1972) · Zbl 0238.60018
[45] Whitt, W., Some useful functions for functional limit theorems, Math. Oper. Res., 5, 67-85 (1980) · Zbl 0428.60010
[46] Volkonski, V. A.; Rozanov, Yu. A., Some limit theorems for random functions, I and II, Theory Probab. Appl., 4, 178-197 (1959), 6 (1961) 186-198 · Zbl 0092.33502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.