Sohaib, Muhammad; Shah, Abdullah Fully decoupled pressure projection scheme for the numerical solution of diffuse interface model of two-phase flow. (English) Zbl 07540492 Commun. Nonlinear Sci. Numer. Simul. 112, Article ID 106547, 12 p. (2022). MSC: 65Mxx 76Mxx 76Dxx PDF BibTeX XML Cite \textit{M. Sohaib} and \textit{A. Shah}, Commun. Nonlinear Sci. Numer. Simul. 112, Article ID 106547, 12 p. (2022; Zbl 07540492) Full Text: DOI OpenURL
Yoon, Min; Sung, Hyung Jin Wall-attached structures in a drag-reduced turbulent channel flow. (English) Zbl 07537803 J. Fluid Mech. 943, Paper No. A14, 22 p. (2022). MSC: 76F40 76F65 76M20 PDF BibTeX XML Cite \textit{M. Yoon} and \textit{H. J. Sung}, J. Fluid Mech. 943, Paper No. A14, 22 p. (2022; Zbl 07537803) Full Text: DOI OpenURL
Shang, Yueqiang; Liu, Qing A stabilized fractional-step finite element method for the time-dependent Navier-Stokes equations. (English) Zbl 07533155 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 61-75 (2022). MSC: 35Q30 65M15 65M60 76D05 PDF BibTeX XML Cite \textit{Y. Shang} and \textit{Q. Liu}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 61--75 (2022; Zbl 07533155) Full Text: DOI OpenURL
Parada, Samuel; Codina, Ramon; Baiges, Joan A VMS-based fractional step technique for the compressible Navier-Stokes equations using conservative variables. (English) Zbl 07525129 J. Comput. Phys. 459, Article ID 111137, 25 p. (2022). MSC: 76Mxx 76Nxx 76Dxx PDF BibTeX XML Cite \textit{S. Parada} et al., J. Comput. Phys. 459, Article ID 111137, 25 p. (2022; Zbl 07525129) Full Text: DOI OpenURL
Banihashemi, Seddigheh; Jafaria, Hossein; Babaei, Afshin A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. (English) Zbl 07495838 Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 339-357 (2022). MSC: 60H35 34K50 34K37 26A33 PDF BibTeX XML Cite \textit{S. Banihashemi} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 2, 339--357 (2022; Zbl 07495838) Full Text: DOI OpenURL
Banihashemi, S.; Jafari, H.; Babaei, A. A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order. (English) Zbl 07432441 J. Comput. Appl. Math. 403, Article ID 113845, 12 p. (2022). MSC: 65C30 60H35 34K50 34K40 34K37 PDF BibTeX XML Cite \textit{S. Banihashemi} et al., J. Comput. Appl. Math. 403, Article ID 113845, 12 p. (2022; Zbl 07432441) Full Text: DOI OpenURL
He, Lingyun; Banihashemi, Seddigheh; Jafari, Hossein; Babaei, Afshin Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme. (English) Zbl 1485.65012 Chaos Solitons Fractals 149, Article ID 111018, 16 p. (2021). MSC: 65C30 34K50 34K37 60H35 34K60 PDF BibTeX XML Cite \textit{L. He} et al., Chaos Solitons Fractals 149, Article ID 111018, 16 p. (2021; Zbl 1485.65012) Full Text: DOI OpenURL
Samei, Mohammad Esmael; Zanganeh, Hasti; Aydogan, Seher Melike Investigate a class of the singular fractional integro-differential quantum equations with multi-step methods. (English) Zbl 1485.34049 J. Math. Ext. 15, No. 5, Paper No. 15, 54 p. (2021). MSC: 34A08 34B16 39A13 PDF BibTeX XML Cite \textit{M. E. Samei} et al., J. Math. Ext. 15, No. 5, Paper No. 15, 54 p. (2021; Zbl 1485.34049) Full Text: DOI OpenURL
Ong, Kian Chuan; Lai, Ming-Chih; Seol, Yunchang An immersed boundary projection method for incompressible interface simulations in 3D flows. (English) Zbl 07506522 J. Comput. Phys. 430, Article ID 110090, 18 p. (2021). MSC: 76Mxx 76Dxx 76Zxx PDF BibTeX XML Cite \textit{K. C. Ong} et al., J. Comput. Phys. 430, Article ID 110090, 18 p. (2021; Zbl 07506522) Full Text: DOI OpenURL
Parada, Samuel; Codina, Ramon; Baiges, Joan Development of an algebraic fractional step scheme for the primitive formulation of the compressible Navier-Stokes equations. (English) Zbl 07501579 J. Comput. Phys. 433, Article ID 110017, 27 p. (2021). MSC: 76Mxx 76Dxx 76Nxx PDF BibTeX XML Cite \textit{S. Parada} et al., J. Comput. Phys. 433, Article ID 110017, 27 p. (2021; Zbl 07501579) Full Text: DOI OpenURL
Chiarini, A.; Quadrio, M.; Auteri, F. A direction-splitting Navier-Stokes solver on co-located grids. (English) Zbl 07500755 J. Comput. Phys. 429, Article ID 110023, 20 p. (2021). MSC: 76Mxx 76Dxx 65Mxx PDF BibTeX XML Cite \textit{A. Chiarini} et al., J. Comput. Phys. 429, Article ID 110023, 20 p. (2021; Zbl 07500755) Full Text: DOI OpenURL
Li, Can; Li, Min-Min; Zhou, Han Terminal value problem for a generalized fractional ordinary differential equation. (English) Zbl 07442098 Math. Methods Appl. Sci. 44, No. 17, 12963-12979 (2021). MSC: 65Lxx 34A08 PDF BibTeX XML Cite \textit{C. Li} et al., Math. Methods Appl. Sci. 44, No. 17, 12963--12979 (2021; Zbl 07442098) Full Text: DOI OpenURL
Yuan, Yirang; Li, Changfeng; Yang, Qing Mixed finite element-second order upwind fractional step difference scheme of Darcy-Forchheimer miscible displacement and its numerical analysis. (English) Zbl 1464.65190 J. Sci. Comput. 86, No. 2, Paper No. 24, 19 p. (2021). MSC: 65N30 65M06 65M15 76S05 PDF BibTeX XML Cite \textit{Y. Yuan} et al., J. Sci. Comput. 86, No. 2, Paper No. 24, 19 p. (2021; Zbl 1464.65190) Full Text: DOI OpenURL
Liu, Mingyang; Gao, Guangjun; Zhu, Huifen; Jiang, Chen A cell-based smoothed finite element method stabilized by implicit SUPG/SPGP/fractional step method for incompressible flow. (English) Zbl 1464.76056 Eng. Anal. Bound. Elem. 124, 194-210 (2021). MSC: 76M10 65M60 76D05 PDF BibTeX XML Cite \textit{M. Liu} et al., Eng. Anal. Bound. Elem. 124, 194--210 (2021; Zbl 1464.76056) Full Text: DOI OpenURL
An, Rong; Zhou, Can; Su, Jian A new higher order fractional-step method for the incompressible Navier-Stokes equations. (English) Zbl 07409037 Adv. Appl. Math. Mech. 12, No. 2, 362-385 (2020). MSC: 65M06 65N06 65M12 65M15 76D05 35Q30 PDF BibTeX XML Cite \textit{R. An} et al., Adv. Appl. Math. Mech. 12, No. 2, 362--385 (2020; Zbl 07409037) Full Text: DOI OpenURL
Wang, Yunxia; Han, Xuefeng; Si, Zhiyong A viscosity-splitting method for the Navier-Stokes/ Darcy problem. (English) Zbl 07409031 Adv. Appl. Math. Mech. 12, No. 1, 251-277 (2020). MSC: 76D05 35Q30 65M60 65N30 PDF BibTeX XML Cite \textit{Y. Wang} et al., Adv. Appl. Math. Mech. 12, No. 1, 251--277 (2020; Zbl 07409031) Full Text: DOI OpenURL
Perot, J. Blair; Sanchez-Rocha, Martin; Malan, Paul A fractional-step method for steady-state flow. (English) Zbl 1453.76106 J. Comput. Phys. 403, Article ID 109057, 19 p. (2020). MSC: 76M12 76D05 76M10 PDF BibTeX XML Cite \textit{J. B. Perot} et al., J. Comput. Phys. 403, Article ID 109057, 19 p. (2020; Zbl 1453.76106) Full Text: DOI OpenURL
Wang, Kai; Zhou, Zhi High-order time stepping schemes for semilinear subdiffusion equations. (English) Zbl 1452.65252 SIAM J. Numer. Anal. 58, No. 6, 3226-3250 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65N15 35R11 26A33 PDF BibTeX XML Cite \textit{K. Wang} and \textit{Z. Zhou}, SIAM J. Numer. Anal. 58, No. 6, 3226--3250 (2020; Zbl 1452.65252) Full Text: DOI arXiv OpenURL
An, Rong Error analysis of a new fractional-step method for the incompressible Navier-Stokes equations with variable density. (English) Zbl 1450.65115 J. Sci. Comput. 84, No. 1, Paper No. 3, 21 p. (2020). Reviewer: Dana Černá (Liberec) MSC: 65M60 65M06 65N30 76M10 76M20 65M15 65M12 76D05 PDF BibTeX XML Cite \textit{R. An}, J. Sci. Comput. 84, No. 1, Paper No. 3, 21 p. (2020; Zbl 1450.65115) Full Text: DOI OpenURL
Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W. Fourth-order accurate fractional-step IMEX schemes for the incompressible Navier-Stokes equations on moving overlapping grids. (English) Zbl 1442.76079 Comput. Methods Appl. Mech. Eng. 366, Article ID 113040, 32 p. (2020). MSC: 76M20 65M06 76D05 PDF BibTeX XML Cite \textit{F. Meng} et al., Comput. Methods Appl. Mech. Eng. 366, Article ID 113040, 32 p. (2020; Zbl 1442.76079) Full Text: DOI OpenURL
Bujanda, B.; Moreta, M. J.; Jorge, J. C. New fractional step Runge-Kutta-Nyström methods up to order three. (English) Zbl 1433.65121 Appl. Math. Comput. 366, Article ID 124743, 19 p. (2020). MSC: 65L04 65L06 65L20 65L05 34A08 PDF BibTeX XML Cite \textit{B. Bujanda} et al., Appl. Math. Comput. 366, Article ID 124743, 19 p. (2020; Zbl 1433.65121) Full Text: DOI OpenURL
Parada, Samuel; Baiges, Joan; Codina, Ramon A fractional step method for computational aeroacoustics using weak imposition of Dirichlet boundary conditions. (English) Zbl 07149133 Comput. Fluids 197, Article ID 104374, 17 p. (2020). MSC: 76-XX PDF BibTeX XML Cite \textit{S. Parada} et al., Comput. Fluids 197, Article ID 104374, 17 p. (2020; Zbl 07149133) Full Text: DOI OpenURL
Zhu, Mu-Zheng; Zhang, Guo-Feng; Qi, Ya-E On single-step HSS iterative method with circulant preconditioner for fractional diffusion equations. (English) Zbl 07532420 Adv. Difference Equ. 2019, Paper No. 422, 14 p. (2019). MSC: 65M06 65F10 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{M.-Z. Zhu} et al., Adv. Difference Equ. 2019, Paper No. 422, 14 p. (2019; Zbl 07532420) Full Text: DOI OpenURL
Wang, Mengze; Wang, Qi; Zaki, Tamer A. Discrete adjoint of fractional-step incompressible Navier-Stokes solver in curvilinear coordinates and application to data assimilation. (English) Zbl 1452.76192 J. Comput. Phys. 396, 427-450 (2019). MSC: 76M30 76D05 76D07 65M22 65K10 PDF BibTeX XML Cite \textit{M. Wang} et al., J. Comput. Phys. 396, 427--450 (2019; Zbl 1452.76192) Full Text: DOI OpenURL
Guo, Tongqing; Shen, Ennan; Lu, Zhiliang; Wang, Yan; Dong, Lu Implicit heat flux correction-based immersed boundary-finite volume method for thermal flows with Neumann boundary conditions. (English) Zbl 1452.76115 J. Comput. Phys. 386, 64-83 (2019). MSC: 76M12 76N06 80A17 65M08 65Z05 76R10 PDF BibTeX XML Cite \textit{T. Guo} et al., J. Comput. Phys. 386, 64--83 (2019; Zbl 1452.76115) Full Text: DOI OpenURL
Sweilam, N. H.; Abou Hasan, M. M. An improved method for nonlinear variable-order equation. (English) Zbl 1480.65294 Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3021-3046 (2019). MSC: 65M70 33C45 35R11 PDF BibTeX XML Cite \textit{N. H. Sweilam} and \textit{M. M. Abou Hasan}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3021--3046 (2019; Zbl 1480.65294) Full Text: DOI OpenURL
Bosnyakov, S. M.; Vlasenko, V. V.; Engulatova, M. F.; Matyash, S. V.; Mikhailov, S. V.; Molev, S. S. Efficiency of two approaches to computing the flow around an airfoil with flaps in the case of flow separation. (English. Russian original) Zbl 1453.76090 Comput. Math. Math. Phys. 59, No. 1, 82-95 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 1, 87-101 (2019). MSC: 76M12 65M08 76G25 PDF BibTeX XML Cite \textit{S. M. Bosnyakov} et al., Comput. Math. Math. Phys. 59, No. 1, 82--95 (2019; Zbl 1453.76090); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 1, 87--101 (2019) Full Text: DOI OpenURL
Moore, Elvin J.; Sirisubtawee, Sekson; Koonprasert, Sanoe A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. (English) Zbl 1459.92138 Adv. Difference Equ. 2019, Paper No. 200, 20 p. (2019). MSC: 92D30 26A33 34A08 65L05 PDF BibTeX XML Cite \textit{E. J. Moore} et al., Adv. Difference Equ. 2019, Paper No. 200, 20 p. (2019; Zbl 1459.92138) Full Text: DOI OpenURL
Wang, Ying; Mei, Liquan; Li, Qi; Bu, Linlin Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation. (English) Zbl 1407.65230 Appl. Numer. Math. 136, 257-278 (2019). MSC: 65M70 65M60 65M15 35R11 35Q55 65M06 65F15 PDF BibTeX XML Cite \textit{Y. Wang} et al., Appl. Numer. Math. 136, 257--278 (2019; Zbl 1407.65230) Full Text: DOI OpenURL
Samuel, Shikaa; Gill, Vinod On Riesz-Caputo fractional differentiation matrix of radial basis functions via complex step differentiation method. (English) Zbl 07449792 J. Fract. Calc. Appl. 9, No. 2, 133-140 (2018). MSC: 65Mxx 26A33 65D25 30E05 PDF BibTeX XML Cite \textit{S. Samuel} and \textit{V. Gill}, J. Fract. Calc. Appl. 9, No. 2, 133--140 (2018; Zbl 07449792) Full Text: Link OpenURL
Li, Changfeng; Yuan, Yirang; Song, Huailing An upwind mixed volume element-fractional step method on a changing mesh for compressible contamination treatment from nuclear waste. (English) Zbl 07408341 Adv. Appl. Math. Mech. 10, No. 6, 1384-1417 (2018). MSC: 65M08 65M15 65N30 65N12 76S05 76R50 35K05 76N10 PDF BibTeX XML Cite \textit{C. Li} et al., Adv. Appl. Math. Mech. 10, No. 6, 1384--1417 (2018; Zbl 07408341) Full Text: DOI OpenURL
Deteix, J.; Yakoubi, D. Improving the pressure accuracy in a projection scheme for incompressible fluids with variable viscosity. (English) Zbl 1459.76078 Appl. Math. Lett. 79, 111-117 (2018). MSC: 76M10 76M20 76D05 PDF BibTeX XML Cite \textit{J. Deteix} and \textit{D. Yakoubi}, Appl. Math. Lett. 79, 111--117 (2018; Zbl 1459.76078) Full Text: DOI OpenURL
Amanda, Ramotsho; Atangana, Abdon Derivation of a groundwater flow model within leaky and self-similar aquifers: beyond Hantush model. (English) Zbl 1442.76108 Chaos Solitons Fractals 116, 414-423 (2018). MSC: 76S05 86A05 34A08 65L20 PDF BibTeX XML Cite \textit{R. Amanda} and \textit{A. Atangana}, Chaos Solitons Fractals 116, 414--423 (2018; Zbl 1442.76108) Full Text: DOI OpenURL
Lovrić, A.; Dettmer, Wulf G.; Kadapa, Chennakesava; Perić, Djordje A new family of projection schemes for the incompressible Navier-Stokes equations with control of high-frequency damping. (English) Zbl 1440.76077 Comput. Methods Appl. Mech. Eng. 339, 160-183 (2018). MSC: 76M10 65M60 76D05 PDF BibTeX XML Cite \textit{A. Lovrić} et al., Comput. Methods Appl. Mech. Eng. 339, 160--183 (2018; Zbl 1440.76077) Full Text: DOI OpenURL
Correa, Maicon R.; Murad, Marcio A. A new sequential method for three-phase immiscible flow in poroelastic media. (English) Zbl 1416.76101 J. Comput. Phys. 373, 493-532 (2018). MSC: 76M10 76T30 74F10 PDF BibTeX XML Cite \textit{M. R. Correa} and \textit{M. A. Murad}, J. Comput. Phys. 373, 493--532 (2018; Zbl 1416.76101) Full Text: DOI OpenURL
Sowa, Marcin Application of subival in solving initial value problems with fractional derivatives. (English) Zbl 1426.65096 Appl. Math. Comput. 319, 86-103 (2018). MSC: 65L05 34A08 65Y15 PDF BibTeX XML Cite \textit{M. Sowa}, Appl. Math. Comput. 319, 86--103 (2018; Zbl 1426.65096) Full Text: DOI OpenURL
Codina, Ramon On the design of algebraic fractional step methods for viscoelastic incompressible flows. (English) Zbl 1417.35115 Doubova, Anna (ed.) et al., Recent advances in PDEs: analysis, numerics and control. In honor of Prof. Fernández-Cara’s 60th birthday. Based on talks given at the workshop, Sevilla, Spain, January 25–27, 2017. Cham: Springer. SEMA SIMAI Springer Ser. 17, 95-115 (2018). MSC: 35Q35 76A10 35R11 65M60 76M10 65M12 PDF BibTeX XML Cite \textit{R. Codina}, SEMA SIMAI Springer Ser. 17, 95--115 (2018; Zbl 1417.35115) Full Text: DOI OpenURL
Das, Abhishek; Natesan, Srinivasan Higher-order convergence with fractional-step method for singularly perturbed 2D parabolic convection-diffusion problems on Shishkin mesh. (English) Zbl 1409.65052 Comput. Math. Appl. 75, No. 7, 2387-2403 (2018). MSC: 65M06 65M12 65M50 PDF BibTeX XML Cite \textit{A. Das} and \textit{S. Natesan}, Comput. Math. Appl. 75, No. 7, 2387--2403 (2018; Zbl 1409.65052) Full Text: DOI OpenURL
Wang, Nan; Huang, Chengming An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg-Landau equations. (English) Zbl 1409.65057 Comput. Math. Appl. 75, No. 7, 2223-2242 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{N. Wang} and \textit{C. Huang}, Comput. Math. Appl. 75, No. 7, 2223--2242 (2018; Zbl 1409.65057) Full Text: DOI OpenURL
Shah, Abdullah; Sabir, Muhammad; Qasim, Muhammad; Bastian, Peter Efficient numerical scheme for solving the Allen-Cahn equation. (English) Zbl 1407.65130 Numer. Methods Partial Differ. Equations 34, No. 5, 1820-1833 (2018). MSC: 65M06 65M60 65M50 35Q74 PDF BibTeX XML Cite \textit{A. Shah} et al., Numer. Methods Partial Differ. Equations 34, No. 5, 1820--1833 (2018; Zbl 1407.65130) Full Text: DOI OpenURL
Kang, Ting; Zhang, Qimin Strong convergence of the split-step \(\theta\)-method for stochastic age-dependent capital system with Poisson jumps and fractional Brownian motion. (English) Zbl 1448.65011 Adv. Difference Equ. 2018, Paper No. 371, 20 p. (2018). MSC: 65C30 60H35 60H10 65L20 60H15 PDF BibTeX XML Cite \textit{T. Kang} and \textit{Q. Zhang}, Adv. Difference Equ. 2018, Paper No. 371, 20 p. (2018; Zbl 1448.65011) Full Text: DOI OpenURL
Das, Abhishek; Natesan, Srinivasan Fractional step method for singularly perturbed 2D delay parabolic convection diffusion problems on Shishkin mesh. (English) Zbl 1401.65092 Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 65, 23 p. (2018). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{A. Das} and \textit{S. Natesan}, Int. J. Appl. Comput. Math. 4, No. 2, Paper No. 65, 23 p. (2018; Zbl 1401.65092) Full Text: DOI OpenURL
Sarv Ahrabi, Sima; Momenzadeh, Alireza On failed methods of fractional differential equations: the case of multi-step generalized differential transform method. (English) Zbl 1416.65250 Mediterr. J. Math. 15, No. 4, Paper No. 149, 1-10 (2018). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{S. Sarv Ahrabi} and \textit{A. Momenzadeh}, Mediterr. J. Math. 15, No. 4, Paper No. 149, 1--10 (2018; Zbl 1416.65250) Full Text: DOI arXiv OpenURL
Cardone, Angelamaria; Conte, Dajana; Paternoster, Beatrice Two-step collocation methods for fractional differential equations. (English) Zbl 1398.65158 Discrete Contin. Dyn. Syst., Ser. B 23, No. 7, 2709-2725 (2018). MSC: 65L05 65R20 34A08 65D07 PDF BibTeX XML Cite \textit{A. Cardone} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 7, 2709--2725 (2018; Zbl 1398.65158) Full Text: DOI OpenURL
Garrappa, Roberto Numerical solution of fractional differential equations: a survey and a software tutorial. (English) Zbl 06916890 Mathematics 6, No. 2, Paper No. 16, 23 p. (2018). MSC: 65-XX 70-XX 94-XX PDF BibTeX XML Cite \textit{R. Garrappa}, Mathematics 6, No. 2, Paper No. 16, 23 p. (2018; Zbl 06916890) Full Text: DOI OpenURL
Iampietro, D.; Daude, F.; Galon, P.; Hérard, J.-M. A Mach-sensitive splitting approach for Euler-like systems. (English) Zbl 1394.76075 ESAIM, Math. Model. Numer. Anal. 52, No. 1, 207-253 (2018). MSC: 76M12 65M08 35Q35 76N15 PDF BibTeX XML Cite \textit{D. Iampietro} et al., ESAIM, Math. Model. Numer. Anal. 52, No. 1, 207--253 (2018; Zbl 1394.76075) Full Text: DOI HAL OpenURL
Mergia, Woinshet D.; Patidar, Kailash C. Fractional-step \(\theta\)-method for solving singularly perturbed problem in ecology. (English) Zbl 1415.65169 Adv. Comput. Math. 44, No. 3, 645-671 (2018). MSC: 65L11 65L05 65L12 65L20 92D40 PDF BibTeX XML Cite \textit{W. D. Mergia} and \textit{K. C. Patidar}, Adv. Comput. Math. 44, No. 3, 645--671 (2018; Zbl 1415.65169) Full Text: DOI OpenURL
Iampietro, D.; Daude, F.; Galon, P.; Hérard, J.-M. A Mach-sensitive implicit-explicit scheme adapted to compressible multi-scale flows. (English) Zbl 1432.76186 J. Comput. Appl. Math. 340, 122-150 (2018). MSC: 76M20 65M06 76Nxx PDF BibTeX XML Cite \textit{D. Iampietro} et al., J. Comput. Appl. Math. 340, 122--150 (2018; Zbl 1432.76186) Full Text: DOI HAL OpenURL
Yuan, Yirang; Cheng, Aijie; Yang, Dangping; Li, Changfeng; Yang, Qing Convergence analysis of mixed volume element-characteristic mixed volume element for three-dimensional chemical oil-recovery seepage coupled problem. (English) Zbl 1399.65311 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 2, 519-545 (2018). MSC: 65N12 65N08 65M08 65M12 65M25 35R11 35B45 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 2, 519--545 (2018; Zbl 1399.65311) Full Text: DOI OpenURL
Batangouna, Narcisse; Pierre, Morgan Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. (English) Zbl 1375.37167 Commun. Pure Appl. Anal. 17, No. 1, 1-19 (2018). MSC: 37L30 65M12 35B41 80A22 PDF BibTeX XML Cite \textit{N. Batangouna} and \textit{M. Pierre}, Commun. Pure Appl. Anal. 17, No. 1, 1--19 (2018; Zbl 1375.37167) Full Text: DOI OpenURL
Neusser, J.; Schleper, V. Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions. (English) Zbl 1411.76092 Appl. Math. Comput. 304, 65-82 (2017). MSC: 76M12 65M08 76T10 PDF BibTeX XML Cite \textit{J. Neusser} and \textit{V. Schleper}, Appl. Math. Comput. 304, 65--82 (2017; Zbl 1411.76092) Full Text: DOI arXiv OpenURL
Yuan, Yirang; Yang, Qing; Li, Changfeng; Sun, Tongjun A numerical approximation structured by mixed finite element and upwind fractional step difference for semiconductor device with heat conduction and its numerical analysis. (English) Zbl 1399.65272 Numer. Math., Theory Methods Appl. 10, No. 3, 541-561 (2017). MSC: 65M60 65M15 82D37 80A20 78A35 35R11 76R50 65M06 65Y10 65N30 35J62 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Numer. Math., Theory Methods Appl. 10, No. 3, 541--561 (2017; Zbl 1399.65272) Full Text: DOI OpenURL
Yuan, Yi-Rang; Yang, Qing; Li, Chang-Feng; Sun, Tong-Jun A mixed-finite volume element coupled with the method of characteristic fractional step difference for simulating transient behavior of semiconductor device of heat conductor and its numerical analysis. (English) Zbl 1382.82048 Acta Math. Appl. Sin., Engl. Ser. 33, No. 4, 1053-1072 (2017). MSC: 82D37 65M60 65N30 80A20 65M55 35Q82 78A35 PDF BibTeX XML Cite \textit{Y.-R. Yuan} et al., Acta Math. Appl. Sin., Engl. Ser. 33, No. 4, 1053--1072 (2017; Zbl 1382.82048) Full Text: DOI OpenURL
Adam, L.; Outrata, J.; Roubíček, T. Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains. (English) Zbl 1379.35327 Optimization 66, No. 12, 2025-2049 (2017). MSC: 35Q90 49N10 65K15 65M32 74M15 74P10 90C20 74S05 93B30 93C20 74S20 PDF BibTeX XML Cite \textit{L. Adam} et al., Optimization 66, No. 12, 2025--2049 (2017; Zbl 1379.35327) Full Text: DOI arXiv Link OpenURL
Sowa, Marcin Error computation strategies in an adaptive step size solver for time fractional problems. (English) Zbl 1379.65057 Wituła, Roman (ed.) et al., Selected problems on experimental mathematics. Gliwice: Wydawnictwo Politechniki Śląskiej (ISBN 978-83-7880-476-5/pbk). Monografia (Gliwice) 672, 89-102 (2017). MSC: 65L70 65L05 34A08 65L50 94C05 PDF BibTeX XML Cite \textit{M. Sowa}, Monogr., Gliwice 672, 89--102 (2017; Zbl 1379.65057) OpenURL
Li, Changfeng; Yuan, Yirang; Sun, Tongjun; Yang, Qing Mixed volume element-characteristic fractional step difference method for contamination from nuclear waste disposal. (English) Zbl 1457.65123 J. Sci. Comput. 72, No. 2, 467-499 (2017). MSC: 65M60 65M08 65M25 65M12 65M15 76S05 80A19 35K05 35R11 PDF BibTeX XML Cite \textit{C. Li} et al., J. Sci. Comput. 72, No. 2, 467--499 (2017; Zbl 1457.65123) Full Text: DOI OpenURL
Yuan, Yirang; Yang, Qing; Li, Changfeng; Sun, Tongjun Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems. (English) Zbl 1399.65201 Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 1, 259-279 (2017). MSC: 65M08 65M60 82D37 65M06 78A25 80A20 35R11 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Acta Math. Sci., Ser. B, Engl. Ed. 37, No. 1, 259--279 (2017; Zbl 1399.65201) Full Text: DOI OpenURL
Roubíček, Tomáš; Panagiotopoulos, Christos G. Energy-conserving time discretization of abstract dynamic problems with applications in continuum mechanics of solids. (English) Zbl 1375.35546 Numer. Funct. Anal. Optim. 38, No. 9, 1143-1172 (2017). MSC: 35Q74 35R45 37N15 65K15 65P99 74C05 74H15 74J99 74M10 74N30 74R05 90C20 PDF BibTeX XML Cite \textit{T. Roubíček} and \textit{C. G. Panagiotopoulos}, Numer. Funct. Anal. Optim. 38, No. 9, 1143--1172 (2017; Zbl 1375.35546) Full Text: DOI arXiv OpenURL
Chen, Wenbin; Han, Daozhi; Wang, Xiaoming Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry. (English) Zbl 1476.76089 Numer. Math. 137, No. 1, 229-255 (2017). MSC: 76T99 76S05 76M99 65M60 35Q35 65M12 76D07 PDF BibTeX XML Cite \textit{W. Chen} et al., Numer. Math. 137, No. 1, 229--255 (2017; Zbl 1476.76089) Full Text: DOI arXiv OpenURL
Li, Wen; Wang, Song; Rehbock, Volker A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. (English) Zbl 1372.65207 Numer. Algebra Control Optim. 7, No. 3, 273-287 (2017). MSC: 65L05 34A08 65L20 PDF BibTeX XML Cite \textit{W. Li} et al., Numer. Algebra Control Optim. 7, No. 3, 273--287 (2017; Zbl 1372.65207) Full Text: DOI OpenURL
Iampietro, David; Daude, Frédéric; Galon, Pascal; Hérard, Jean-Marc A weighted splitting approach for low-Mach number flows. (English) Zbl 1365.76225 Cancès, Clément (ed.) et al., Finite volumes for complex applications VIII – hyperbolic, elliptic and parabolic problems. FVCA 8, Lille, France, June 12–16, 2017. Cham: Springer (ISBN 978-3-319-57393-9/hbk; 978-3-319-57394-6/ebook; 978-3-319-58818-6/set). Springer Proceedings in Mathematics & Statistics 200, 3-11 (2017). MSC: 76M25 76L05 PDF BibTeX XML Cite \textit{D. Iampietro} et al., Springer Proc. Math. Stat. 200, 3--11 (2017; Zbl 1365.76225) Full Text: DOI HAL OpenURL
Roubíček, Tomáš An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. (English) Zbl 06710672 Discrete Contin. Dyn. Syst., Ser. S 10, No. 4, 867-893 (2017). MSC: 65K15 65P99 74F10 74H15 35Q74 37N15 74J99 74R20 76S05 80A17 PDF BibTeX XML Cite \textit{T. Roubíček}, Discrete Contin. Dyn. Syst., Ser. S 10, No. 4, 867--893 (2017; Zbl 06710672) Full Text: DOI OpenURL
Burman, Erik; Ern, Alexandre; Fernández, Miguel A. Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. (English) Zbl 1398.76097 ESAIM, Math. Model. Numer. Anal. 51, No. 2, 487-507 (2017). MSC: 76M10 65M12 65M60 76D07 PDF BibTeX XML Cite \textit{E. Burman} et al., ESAIM, Math. Model. Numer. Anal. 51, No. 2, 487--507 (2017; Zbl 1398.76097) Full Text: DOI Link OpenURL
An, Rong; Zhou, Can Error analysis of a fractional-step method for magnetohydrodynamics equations. (English) Zbl 1388.76121 J. Comput. Appl. Math. 313, 168-184 (2017). MSC: 76M10 65M60 76M25 65M12 65M15 76W05 PDF BibTeX XML Cite \textit{R. An} and \textit{C. Zhou}, J. Comput. Appl. Math. 313, 168--184 (2017; Zbl 1388.76121) Full Text: DOI OpenURL
Duo, Siwei; Zhang, Yanzhi Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. (English) Zbl 1443.65242 Comput. Math. Appl. 71, No. 11, 2257-2271 (2016). MSC: 65M70 35B25 35Q55 35R11 PDF BibTeX XML Cite \textit{S. Duo} and \textit{Y. Zhang}, Comput. Math. Appl. 71, No. 11, 2257--2271 (2016; Zbl 1443.65242) Full Text: DOI OpenURL
Wang, Pengde; Huang, Chengming Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. (English) Zbl 1443.65145 Comput. Math. Appl. 71, No. 5, 1114-1128 (2016). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{P. Wang} and \textit{C. Huang}, Comput. Math. Appl. 71, No. 5, 1114--1128 (2016; Zbl 1443.65145) Full Text: DOI OpenURL
Moreta, M. J.; Bujanda, Blanca; Jorge, J. C. Avoiding the order reduction when solving second-order in time PDEs with fractional step Runge-Kutta-Nyström methods. (English) Zbl 1443.65173 Comput. Math. Appl. 71, No. 7, 1425-1447 (2016). MSC: 65M20 65L06 65M06 65M60 35R11 PDF BibTeX XML Cite \textit{M. J. Moreta} et al., Comput. Math. Appl. 71, No. 7, 1425--1447 (2016; Zbl 1443.65173) Full Text: DOI OpenURL
Gil, Antonio J.; Lee, Chun Hean; Bonet, Javier; Ortigosa, Rogelio A first order hyperbolic framework for large strain computational solid dynamics. II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. (English) Zbl 1425.74016 Comput. Methods Appl. Mech. Eng. 300, 146-181 (2016). MSC: 74A05 74S05 65M60 74B20 74S10 PDF BibTeX XML Cite \textit{A. J. Gil} et al., Comput. Methods Appl. Mech. Eng. 300, 146--181 (2016; Zbl 1425.74016) Full Text: DOI OpenURL
Karakatsani, Fotini A posteriori error estimates for fully discrete fractional-step \(\vartheta\)-approximations for parabolic equations. (English) Zbl 1433.65215 IMA J. Numer. Anal. 36, No. 3, 1334-1361 (2016). MSC: 65M60 65M15 35K20 PDF BibTeX XML Cite \textit{F. Karakatsani}, IMA J. Numer. Anal. 36, No. 3, 1334--1361 (2016; Zbl 1433.65215) Full Text: DOI OpenURL
Madzvamuse, A.; Chung, A. H. Analysis and simulations of coupled bulk-surface reaction-diffusion systems on exponentially evolving volumes. (English) Zbl 1458.35412 Math. Model. Nat. Phenom. 11, No. 5, 4-32 (2016). MSC: 35Q79 35K51 35K57 35B35 35B36 65M60 65M06 PDF BibTeX XML Cite \textit{A. Madzvamuse} and \textit{A. H. Chung}, Math. Model. Nat. Phenom. 11, No. 5, 4--32 (2016; Zbl 1458.35412) Full Text: DOI Link OpenURL
Momani, Shaher; Arqub, Omar Abu; Freihat, Asad; Al-Smadi, Mohammed Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. (English) Zbl 1364.35369 Appl. Comput. Math. 15, No. 3, 319-330 (2016). MSC: 35Q84 26A33 35A22 35R11 81Q05 65M99 82C31 PDF BibTeX XML Cite \textit{S. Momani} et al., Appl. Comput. Math. 15, No. 3, 319--330 (2016; Zbl 1364.35369) Full Text: Link OpenURL
Bevan, Rhodri Lt; Nithiarasu, P. A dual time stepping approach to eliminate first order error in fractional step methods for incompressible flows. (English) Zbl 1356.76224 Int. J. Numer. Methods Heat Fluid Flow 26, No. 2, 556-570 (2016). MSC: 76M25 76D05 PDF BibTeX XML Cite \textit{R. L. Bevan} and \textit{P. Nithiarasu}, Int. J. Numer. Methods Heat Fluid Flow 26, No. 2, 556--570 (2016; Zbl 1356.76224) Full Text: DOI OpenURL
Varnhorn, Werner; Zanger, Florian A remark on the fractional step theta scheme for the nonstationary Stokes equations. (English) Zbl 1398.76160 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. ICDDEA, Amadora, Portugal, May 18–22, 2015. Selected contributions. Cham: Springer (ISBN 978-3-319-32855-3/hbk; 978-3-319-32857-7/ebook). Springer Proceedings in Mathematics & Statistics 164, 443-451 (2016). MSC: 76M20 65M06 65M12 76D07 35Q35 35J25 PDF BibTeX XML Cite \textit{W. Varnhorn} and \textit{F. Zanger}, Springer Proc. Math. Stat. 164, 443--451 (2016; Zbl 1398.76160) Full Text: DOI OpenURL
Zayernouri, Mohsen; Matzavinos, Anastasios Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller-Segel chemotaxis system. (English) Zbl 1349.65234 J. Comput. Phys. 317, 1-14 (2016). MSC: 65L06 34A08 92C17 PDF BibTeX XML Cite \textit{M. Zayernouri} and \textit{A. Matzavinos}, J. Comput. Phys. 317, 1--14 (2016; Zbl 1349.65234) Full Text: DOI OpenURL
Bänsch, E.; Brenner, A. A posteriori error estimates for pressure-correction schemes. (English) Zbl 1403.76038 SIAM J. Numer. Anal. 54, No. 4, 2323-2358 (2016). MSC: 76M10 65M60 35J05 35Q30 65M12 65M15 65M22 76D05 76D07 PDF BibTeX XML Cite \textit{E. Bänsch} and \textit{A. Brenner}, SIAM J. Numer. Anal. 54, No. 4, 2323--2358 (2016; Zbl 1403.76038) Full Text: DOI OpenURL
Ndongo, Mor; Diongue, Abdou Kâ; Diop, Aliou; Dossou-Gbété, Simplice Estimation for seasonal fractional ARIMA with stable innovations via the empirical characteristic function method. (English) Zbl 1360.62460 Statistics 50, No. 2, 298-311 (2016). MSC: 62M10 65C05 60G52 62M09 PDF BibTeX XML Cite \textit{M. Ndongo} et al., Statistics 50, No. 2, 298--311 (2016; Zbl 1360.62460) Full Text: arXiv OpenURL
Gallouët, T.; Herbin, R.; Larcher, A.; Latché, J.-C. Analysis of a fractional-step scheme for the \(\mathbf P_1\) radiative diffusion model. (English) Zbl 1350.65094 Comput. Appl. Math. 35, No. 1, 135-151 (2016). Reviewer: Vasilis Dimitriou (Chania) MSC: 65M08 65M12 80A20 35K55 35B50 PDF BibTeX XML Cite \textit{T. Gallouët} et al., Comput. Appl. Math. 35, No. 1, 135--151 (2016; Zbl 1350.65094) Full Text: DOI arXiv OpenURL
Yuste, Santos B.; Quintana-Murillo, J. Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. (English) Zbl 1335.65075 Numer. Algorithms 71, No. 1, 207-228 (2016). MSC: 65M06 35R11 35K05 65M50 65M15 PDF BibTeX XML Cite \textit{S. B. Yuste} and \textit{J. Quintana-Murillo}, Numer. Algorithms 71, No. 1, 207--228 (2016; Zbl 1335.65075) Full Text: DOI arXiv OpenURL
Deng, Lin; Zhang, Yun; Wen, Yanwei; Shan, Bin; Zhou, Huamin A fractional-step thermal lattice Boltzmann model for high Peclet number flow. (English) Zbl 1443.76169 Comput. Math. Appl. 70, No. 5, 1152-1161 (2015). MSC: 76M28 65M75 80A21 PDF BibTeX XML Cite \textit{L. Deng} et al., Comput. Math. Appl. 70, No. 5, 1152--1161 (2015; Zbl 1443.76169) Full Text: DOI OpenURL
Meidner, Dominik; Richter, Thomas A posteriori error estimation for the fractional step theta discretization of the incompressible Navier-Stokes equations. (English) Zbl 1423.76260 Comput. Methods Appl. Mech. Eng. 288, 45-59 (2015). MSC: 76M10 65M60 35Q30 65M15 76D05 PDF BibTeX XML Cite \textit{D. Meidner} and \textit{T. Richter}, Comput. Methods Appl. Mech. Eng. 288, 45--59 (2015; Zbl 1423.76260) Full Text: DOI OpenURL
Castillo, E.; Codina, R. First, second and third order fractional step methods for the three-field viscoelastic flow problem. (English) Zbl 1352.76044 J. Comput. Phys. 296, 113-137 (2015). MSC: 76M10 65M60 35Q35 65M12 76A10 PDF BibTeX XML Cite \textit{E. Castillo} and \textit{R. Codina}, J. Comput. Phys. 296, 113--137 (2015; Zbl 1352.76044) Full Text: DOI OpenURL
Wiens, Jeffrey K.; Stockie, John M. An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. (English) Zbl 1351.76130 J. Comput. Phys. 281, 917-941 (2015). MSC: 76M12 74F10 76D27 65Y05 PDF BibTeX XML Cite \textit{J. K. Wiens} and \textit{J. M. Stockie}, J. Comput. Phys. 281, 917--941 (2015; Zbl 1351.76130) Full Text: DOI arXiv OpenURL
Kuang, Dongyang; Lee, Long A conservative formulation and a numerical algorithm for the double-gyre nonlinear shallow-water model. (English) Zbl 1349.76492 Numer. Math., Theory Methods Appl. 8, No. 4, 634-650 (2015). MSC: 76M20 76B15 PDF BibTeX XML Cite \textit{D. Kuang} and \textit{L. Lee}, Numer. Math., Theory Methods Appl. 8, No. 4, 634--650 (2015; Zbl 1349.76492) Full Text: DOI arXiv OpenURL
Yuan, Yirang; Cheng, Aijie; Yang, Danping; Li, Changfeng Theory and application of fractional step characteristic finite difference method in numerical simulation of second order enhanced oil production. (English) Zbl 1363.76050 Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 6, 1547-1565 (2015). MSC: 76M20 65M06 76S05 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 6, 1547--1565 (2015; Zbl 1363.76050) Full Text: DOI OpenURL
Hürkamp, André; Tanaka, Masato; Kaliske, Michael Complex step derivative approximation of consistent tangent operators for viscoelasticity based on fractional calculus. (English) Zbl 1336.74014 Comput. Mech. 56, No. 6, 1055-1071 (2015). MSC: 74D10 74S05 65D25 65E05 26A33 PDF BibTeX XML Cite \textit{A. Hürkamp} et al., Comput. Mech. 56, No. 6, 1055--1071 (2015; Zbl 1336.74014) Full Text: DOI OpenURL
Badé, Rabé; Chaker, Hedia; Abdelwahed, Mohamed A finite volume method to solve the compressible Navier-Stokes system on unstructured mesh. (English) Zbl 1329.65194 Int. J. Appl. Math. 28, No. 1, 65-84 (2015). MSC: 65M08 35Q30 35Q31 PDF BibTeX XML Cite \textit{R. Badé} et al., Int. J. Appl. Math. 28, No. 1, 65--84 (2015; Zbl 1329.65194) OpenURL
Zeng, Fanhai Second-order stable finite difference schemes for the time-fractional diffusion-wave equation. (English) Zbl 1408.65058 J. Sci. Comput. 65, No. 1, 411-430 (2015). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{F. Zeng}, J. Sci. Comput. 65, No. 1, 411--430 (2015; Zbl 1408.65058) Full Text: DOI arXiv OpenURL
Alomari, A. K. A novel solution for fractional chaotic Chen system. (English) Zbl 1326.65101 J. Nonlinear Sci. Appl. 8, No. 5, 478-488 (2015). MSC: 65L99 34A08 34H10 PDF BibTeX XML Cite \textit{A. K. Alomari}, J. Nonlinear Sci. Appl. 8, No. 5, 478--488 (2015; Zbl 1326.65101) Full Text: DOI Link OpenURL
Yuan, Yirang; Cheng, Aijie; Yang, Danping; Li, Changfeng; Liu, Yunxin Theory and application of numerical simulation method of capillary force enhanced oil production. (English) Zbl 1308.76202 AMM, Appl. Math. Mech., Engl. Ed. 36, No. 3, 379-400 (2015). MSC: 76M20 65M06 76S05 PDF BibTeX XML Cite \textit{Y. Yuan} et al., AMM, Appl. Math. Mech., Engl. Ed. 36, No. 3, 379--400 (2015; Zbl 1308.76202) Full Text: DOI OpenURL
Andre, Michael; Bletzinger, Kai-Uwe; Wüchner, Roland A complementary study of analytical and computational fluid-structure interaction. (English) Zbl 1398.74079 Comput. Mech. 55, No. 2, 345-357 (2015). MSC: 74F10 74S05 76M10 76D05 92C10 PDF BibTeX XML Cite \textit{M. Andre} et al., Comput. Mech. 55, No. 2, 345--357 (2015; Zbl 1398.74079) Full Text: DOI OpenURL
Houzeaux, Guillaume; Eguzkitza, B.; Aubry, R.; Owen, H.; Vázquez, M. A Chimera method for the incompressible Navier-Stokes equations. (English) Zbl 1455.76084 Int. J. Numer. Methods Fluids 75, No. 3, 155-183 (2014). MSC: 76M10 76D05 65M60 PDF BibTeX XML Cite \textit{G. Houzeaux} et al., Int. J. Numer. Methods Fluids 75, No. 3, 155--183 (2014; Zbl 1455.76084) Full Text: DOI Link OpenURL
Abreu, Eduardo Numerical modelling of three-phase immiscible flow in heterogeneous porous media with gravitational effects. (English) Zbl 1466.76027 Math. Comput. Simul. 97, 234-259 (2014). MSC: 76M10 76M20 76S05 76T30 76R10 PDF BibTeX XML Cite \textit{E. Abreu}, Math. Comput. Simul. 97, 234--259 (2014; Zbl 1466.76027) Full Text: DOI OpenURL
Gil, Antonio J.; Lee, Chun Hean; Bonet, Javier; Aguirre, Miquel A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. (English) Zbl 1423.74883 Comput. Methods Appl. Mech. Eng. 276, 659-690 (2014). MSC: 74S05 74B05 74H15 PDF BibTeX XML Cite \textit{A. J. Gil} et al., Comput. Methods Appl. Mech. Eng. 276, 659--690 (2014; Zbl 1423.74883) Full Text: DOI OpenURL
Mramor, K.; Vertnik, R.; Šarler, Bozidar Simulation of laminar backward facing step flow under magnetic field with explicit local radial basis function collocation method. (English) Zbl 1403.76196 Eng. Anal. Bound. Elem. 49, 37-47 (2014). MSC: 76W05 76M22 65M70 76D05 PDF BibTeX XML Cite \textit{K. Mramor} et al., Eng. Anal. Bound. Elem. 49, 37--47 (2014; Zbl 1403.76196) Full Text: DOI OpenURL
Wang, Y.; Shu, C.; Teo, C. J. A fractional step axisymmetric lattice Boltzmann flux solver for incompressible swirling and rotating flows. (English) Zbl 1391.76812 Comput. Fluids 96, 204-214 (2014). MSC: 76U05 76M28 PDF BibTeX XML Cite \textit{Y. Wang} et al., Comput. Fluids 96, 204--214 (2014; Zbl 1391.76812) Full Text: DOI OpenURL
Jauberteau, F.; Temam, R. M.; Tribbia, J. Multiscale/fractional step schemes for the numerical simulation of the rotating shallow water flows with complex periodic topography. (English) Zbl 1349.76223 J. Comput. Phys. 270, 506-531 (2014). MSC: 76M10 76U05 65M70 65M60 86A10 PDF BibTeX XML Cite \textit{F. Jauberteau} et al., J. Comput. Phys. 270, 506--531 (2014; Zbl 1349.76223) Full Text: DOI OpenURL
Madzvamuse, Anotida; Chung, Andy H. W. Fully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations. (English) Zbl 1336.65167 Appl. Math. Comput. 244, 361-374 (2014). MSC: 65M60 35K51 35K57 PDF BibTeX XML Cite \textit{A. Madzvamuse} and \textit{A. H. W. Chung}, Appl. Math. Comput. 244, 361--374 (2014; Zbl 1336.65167) Full Text: DOI arXiv OpenURL
Al-Zou’bi, Hassan; Zurigat, Hassan Solving nonlinear fractional differential equations using multi-step homotopy analysis method. (English) Zbl 1340.65134 An. Univ. Craiova, Ser. Mat. Inf. 41, No. 2, 190-199 (2014). MSC: 65L05 34A08 PDF BibTeX XML Cite \textit{H. Al-Zou'bi} and \textit{H. Zurigat}, An. Univ. Craiova, Ser. Mat. Inf. 41, No. 2, 190--199 (2014; Zbl 1340.65134) OpenURL
Arrarás, Andrés; Portero, Laura Expanded mixed finite element domain decomposition methods on triangular grids. (English) Zbl 1310.65091 Int. J. Numer. Anal. Model. 11, No. 2, 255-270 (2014). MSC: 65M06 65M12 65M20 65M55 65M60 76S05 PDF BibTeX XML Cite \textit{A. Arrarás} and \textit{L. Portero}, Int. J. Numer. Anal. Model. 11, No. 2, 255--270 (2014; Zbl 1310.65091) Full Text: Link OpenURL
Yuan, Yi-rang; Li, Chang-feng; Sun, Tong-jun; Liu, Yun-xin Characteristic fractional step finite difference method for nonlinear section coupled system. (English) Zbl 1298.76126 Appl. Math. Mech., Engl. Ed. 35, No. 10, 1311-1330 (2014). MSC: 76M20 65M06 76S05 65M12 PDF BibTeX XML Cite \textit{Y.-r. Yuan} et al., Appl. Math. Mech., Engl. Ed. 35, No. 10, 1311--1330 (2014; Zbl 1298.76126) Full Text: DOI OpenURL