×

Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. (English) Zbl 1390.34017

Summary: This paper presents an algorithm to obtain numerically stable differentiation matrices for approximating the left- and right-sided Caputo-fractional derivatives. The proposed differentiation matrices named fractional Chebyshev differentiation matrices are obtained using stable recurrence relations at the Chebyshev-Gauss-Lobatto points. These stable recurrence relations overcome previous limitations of the conventional methods such as the size of fractional differentiation matrices due to the exponential growth of round-off errors. Fractional Chebyshev collocation method as a framework for solving fractional differential equations with multi-order Caputo derivatives is also presented. The numerical stability of spectral methods for linear fractional-order differential equations (FDEs) is studied by using the proposed framework. Furthermore, the proposed fractional Chebyshev differentiation matrices obtain the fractional-order derivative of a function with spectral convergence. Therefore, they can be used in various spectral collocation methods to solve a system of linear or nonlinear multi-ordered FDEs. To illustrate the true advantages of the proposed fractional Chebyshev differentiation matrices, the numerical solutions of a linear FDE with a highly oscillatory solution, a stiff nonlinear FDE, and a fractional chaotic system are given. In the first, second, and forth examples, a comparison is made with the solution obtained by the proposed method and the one obtained by the Adams-Bashforth-Moulton method. It is shown the proposed fractional differentiation matrices are highly efficient in solving all the aforementioned examples.

MSC:

34A08 Fractional ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dabiri, A., Butcher, E.A., Nazari, M.: Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J. Sound Vib. 388, 230-244 (2017) · doi:10.1016/j.jsv.2016.10.013
[2] Butcher, E.A., Dabiri, A., Nazari, M.: Stability and Control of Fractional Periodic Time-Delayed Systems, vol. 7. Springer, New York (2017) · Zbl 1387.34109
[3] Dabiri, A., Nazari, M., Butcher, E.A.: The spectral parameter estimation method for parameter identification of linear fractional order systems. In: American Control Conference (ACC), Boston, MA, 6-8 July 2016 · Zbl 0940.65021
[4] Dabiri, A., Nazari, M., Butcher, E.A.: Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In: American Control Conference (ACC), Boston, MA, 6-8 July 2016 · Zbl 1390.93324
[5] Das, S.: Functional Fractional Calculus. Springer, Berlin (2011) · Zbl 1225.26007 · doi:10.1007/978-3-642-20545-3
[6] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach Science Publishers, Philadelphia (1993) · Zbl 0818.26003
[7] Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus, vol. 4. Springer, Berlin (2007) · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[8] Machado, J.: Analysis and design of fractional-order digital control systems. SAMS 27, 107-122 (1997) · Zbl 0875.93154
[9] Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. (1978-Present) 30(1), 133-155 (1986) · Zbl 0613.73034 · doi:10.1122/1.549887
[10] Weilbeer, M.: Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background. Papierflieger (2005) · Zbl 1104.26012
[11] Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36(1), 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[12] Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1-6 (1997) · Zbl 0890.65071
[13] Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 1999, 57-71 (1998)
[14] Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1-4), 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[15] Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[16] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations. To Methods of Their Solution and Some of Their Applications. Academic Press, London (1998) · Zbl 0924.34008
[17] Yaghoobi, S., Moghaddam, B.P., Ivaz, K.: An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn. 87(2), 815-826 (2017) · Zbl 1372.34125 · doi:10.1007/s11071-016-3079-4
[18] Moghaddam, B.P., Yaghoobi, S., Machado, J.T.: An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6), 061001 (2016) · doi:10.1115/1.4032574
[19] Moghaddam, B.P., Mostaghim, Z.S.: A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng. J. 5(2), 585-594 (2014) · doi:10.1016/j.asej.2013.11.007
[20] Moghaddam, B.P., Machado, J.A.T.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput 71(3), 1351-1374 (2017) · Zbl 1370.26017
[21] Moghaddam, B., Machado, J.: Sm-algorithms for approximating the variable-order fractional derivative of high order. Fundamenta Informaticae 151(1-4), 293-311 (2017) · Zbl 1377.65031 · doi:10.3233/FI-2017-1493
[22] Khater, A., Temsah, R., Hassan, M.: A Chebyshev spectral collocation method for solving Burgers-type equations. J. Comput. Appl. Math. 222(2), 333-350 (2008) · Zbl 1153.65102 · doi:10.1016/j.cam.2007.11.007
[23] Maleknejad, K., Hashemizadeh, E., Basirat, B.: Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 52-61 (2012) · Zbl 1244.65243 · doi:10.1016/j.cnsns.2011.04.023
[24] Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[25] Khader, M., Hendy, A.: The approximate and exact solutions of the fractional-order delay differential equations using Legendre seudospectral method. Int. J. Pure Appl. Math. 74(3), 287-297 (2012) · Zbl 1246.34064
[26] Bhrawy, A., Alofi, A.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25-31 (2013) · Zbl 1255.65147 · doi:10.1016/j.aml.2012.01.027
[27] Bhrawy, A., Zaky, M.: A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients. Math. Methods Appl. Sci. 39, 1765-1779 (2016) · Zbl 1382.65338 · doi:10.1002/mma.3600
[28] Bhrawy, A., Zaky, M.: An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197-218 (2017) · Zbl 1353.65106 · doi:10.1016/j.apnum.2016.09.009
[29] Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation. J. Optim. Theory Appl. 1-21 (2016) · Zbl 1471.65157
[30] Petras, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media, New York (2011) · Zbl 1228.34002 · doi:10.1007/978-3-642-18101-6
[31] Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, Mineola (2001) · Zbl 0994.65128
[32] Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10. Siam, Philadelphia (2000) · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[33] Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer Science & Business Media, New York (2011) · Zbl 1227.65117
[34] Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(3), 1023-1052 (2015) · Zbl 1348.65106 · doi:10.1007/s11071-015-2087-0
[35] Hafez, R.M., Ezz-Eldien, S.S., Bhrawy, A.H., Ahmed, E.A., Baleanu, D.: A jacobi Gauss-Lobatto and Gauss-Radau collocation algorithm for solving fractional Fokker-Planck equations. Nonlinear Dyn. 82(3), 1431-1440 (2015) · Zbl 1348.65144 · doi:10.1007/s11071-015-2250-7
[36] Dabiri, A., Butcher, E.A.: Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 50, 284-310 (2017). ISSN 1007-5704 · Zbl 1510.65170 · doi:10.1016/j.cnsns.2017.02.009
[37] Baltensperger, R., Berrut, J.-P.: The errors in calculating the pseudospectral differentiation matrices for Chebyshev-Gauss-Lobatto points. Comput. Math. Appl. 37(1), 41-48 (1999) · Zbl 0940.65021 · doi:10.1016/S0898-1221(98)00240-5
[38] Baltensperger, R.: Improving the accuracy of the matrix differentiation method for arbitrary collocation points. Applied Numerical Mathematics 33(1), 143-149 (2000) · Zbl 0964.65021 · doi:10.1016/S0168-9274(99)00077-X
[39] Don, W.S., Solomonoff, A.: Accuracy and speed in computing the Chebyshev collocation derivative. SIAM J. Sci. Comput. 16(6), 1253-1268 (1995) · Zbl 0840.65010 · doi:10.1137/0916073
[40] Trefethen, L.N., Trummer, M.R.: An instability phenomenon in spectral methods. SIAM J. Numer. Anal. 24(5), 1008-1023 (1987) · Zbl 0636.65124 · doi:10.1137/0724066
[41] Breuer, K.S., Everson, R.M.: On the errors incurred calculating derivatives using Chebyshev polynomials. J. Comput. Phys. 99(1), 56-67 (1992) · Zbl 0747.65009 · doi:10.1016/0021-9991(92)90274-3
[42] Costa, B., Don, W.S.: On the computation of high order pseudospectral derivatives. Appl. Numer. Math. 33(1), 151-159 (2000) · Zbl 0964.65020 · doi:10.1016/S0168-9274(99)00078-1
[43] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Inc., New York (2006) · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[44] Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002) · Zbl 1015.33001 · doi:10.1201/9781420036114
[45] Shiralashetti, S., Deshi, A.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83(1-2), 293-303 (2016) · doi:10.1007/s11071-015-2326-4
[46] Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9(1), 24-82 (1967) · Zbl 0168.15004 · doi:10.1137/1009002
[47] Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2007) · Zbl 1093.76002
[48] Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963-968. IMACS, IEEE-SMC, Lille, France (1996) · Zbl 0875.93154
[49] Saif, M., Ebrahimi, B., Vali, M.: A second order sliding mode strategy for fault detection and fault-tolerant-control of a mems optical switch. Mechatronics 22(6), 696-705 (2012) · doi:10.1016/j.mechatronics.2012.02.008
[50] Dabiri, A., Nazari, M., Butcher, E.A.: Chaos analysis and control in fractional-order systems using fractional Chebyshev collocation method. In: ASME 2016 International Mechanical Engineering Congress and Exposition (IMECE), Phoenix, AZ, 11-17 Nov 2016
[51] Dabiri, A.: Guide to FCC: stability and solution of linear time variant fractional differential equations with spectral convergence using the FCC toolbox package in MATLAB. http://u.arizona.edu/ armandabiri/fcc.html (2017). Accessed 5 Jan 2017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.