Wang, Fangyuan; Zhang, Zhongqiang; Zhou, Zhaojie A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. (English) Zbl 07305150 J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021). MSC: 49M41 49M25 49K20 49N60 65K10 35R11 35K57 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021; Zbl 07305150) Full Text: DOI
Lapin, A. V.; Romanenko, A. D. Iterative methods for mesh approximations of optimal control problems controlled by linear equations with fractional derivatives. (English) Zbl 07309067 Lobachevskii J. Math. 41, No. 12, 2687-2701 (2020). MSC: 65 49 PDF BibTeX XML Cite \textit{A. V. Lapin} and \textit{A. D. Romanenko}, Lobachevskii J. Math. 41, No. 12, 2687--2701 (2020; Zbl 07309067) Full Text: DOI
Harjani, Jackie; López, Belen; Sadarangani, Kishin Existence and uniqueness of mild solutions for a fractional differential equation under Sturm-Liouville boundary conditions when the data function is of Lipschitzian type. (English) Zbl 07239302 Demonstr. Math. 53, 167-173 (2020). MSC: 47H10 49L20 PDF BibTeX XML Cite \textit{J. Harjani} et al., Demonstr. Math. 53, 167--173 (2020; Zbl 07239302) Full Text: DOI
Bandaliyev, R. A.; Mamedov, I. G.; Mardanov, M. J.; Melikov, T. K. Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces. (English) Zbl 1448.49026 Optim. Lett. 14, No. 6, 1519-1532 (2020). MSC: 49K15 34A08 PDF BibTeX XML Cite \textit{R. A. Bandaliyev} et al., Optim. Lett. 14, No. 6, 1519--1532 (2020; Zbl 1448.49026) Full Text: DOI
Plekhanova, Marina V.; Baybulatova, Guzel D. Strong solutions of semilinear equations with lower fractional derivatives. (English) Zbl 1451.34013 Kravchenko, Vladislav V. (ed.) et al., Transmutation operators and applications. Cham: Birkhäuser. Trends Math., 573-585 (2020). MSC: 34A08 34G10 49J20 PDF BibTeX XML Cite \textit{M. V. Plekhanova} and \textit{G. D. Baybulatova}, in: Transmutation operators and applications. Cham: Birkhäuser. 573--585 (2020; Zbl 1451.34013) Full Text: DOI
Soradi-Zeid, Samaneh; Jahanshahi, Hadi; Yousefpour, Amin; Bekiros, Stelios King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. (English) Zbl 1434.65084 Chaos Solitons Fractals 132, Article ID 109569, 9 p. (2020). MSC: 65K10 65L03 49M25 34A08 45D05 91G80 PDF BibTeX XML Cite \textit{S. Soradi-Zeid} et al., Chaos Solitons Fractals 132, Article ID 109569, 9 p. (2020; Zbl 1434.65084) Full Text: DOI
Treanţă, Savin; Mititelu, Ştefan Efficiency for variational control problems on Riemann manifolds with geodesic quasiinvex curvilinear integral functionals. (English) Zbl 1437.35682 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 113, 15 p. (2020). MSC: 35Q93 49J20 49J21 90C29 90C30 58J32 26A33 35R11 93C20 PDF BibTeX XML Cite \textit{S. Treanţă} and \textit{Ş. Mititelu}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 113, 15 p. (2020; Zbl 1437.35682) Full Text: DOI
Soradi-Zeid, Samaneh Efficient radial basis functions approaches for solving a class of fractional optimal control problems. (English) Zbl 1449.49029 Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020). MSC: 49M37 49M05 49L99 65K05 PDF BibTeX XML Cite \textit{S. Soradi-Zeid}, Comput. Appl. Math. 39, No. 1, Paper No. 20, 22 p. (2020; Zbl 1449.49029) Full Text: DOI
Cheng, Xiaoliang; Yuan, Lele; Liang, Kewei Inverse source problem for a distributed-order time fractional diffusion equation. (English) Zbl 07173390 J. Inverse Ill-Posed Probl. 28, No. 1, 17-32 (2020). MSC: 35R11 45Q05 49N45 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Inverse Ill-Posed Probl. 28, No. 1, 17--32 (2020; Zbl 07173390) Full Text: DOI
Baghani, Omid Solving state feedback control of fractional linear quadratic regulator systems using triangular functions. (English) Zbl 07264787 Commun. Nonlinear Sci. Numer. Simul. 73, 319-337 (2019). MSC: 49N05 26A33 49M05 PDF BibTeX XML Cite \textit{O. Baghani}, Commun. Nonlinear Sci. Numer. Simul. 73, 319--337 (2019; Zbl 07264787) Full Text: DOI
Akman Yıldız, Tuğba Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation. (English) Zbl 1442.65108 Comput. Math. Appl. 78, No. 6, 2127-2146 (2019). MSC: 65K10 65M60 PDF BibTeX XML Cite \textit{T. Akman Yıldız}, Comput. Math. Appl. 78, No. 6, 2127--2146 (2019; Zbl 1442.65108) Full Text: DOI
Hallaji, Majid; Ahmadieh Khanesar, Mojtaba; Dideban, Abbas; Vahidyan Kamyad, Ali Optimal control of non-smooth fractional-order systems based on extended Caputo derivative. (English) Zbl 1437.26009 Nonlinear Dyn. 96, No. 1, 57-74 (2019). MSC: 26A33 34A08 49N99 PDF BibTeX XML Cite \textit{M. Hallaji} et al., Nonlinear Dyn. 96, No. 1, 57--74 (2019; Zbl 1437.26009) Full Text: DOI
Plekhanova, Marina V.; Baybulatova, Guzel D. Problems of hard control for a class of degenerate fractional order evolution equations. (English) Zbl 1439.49040 Khachay, Michael (ed.) et al., Mathematical optimization theory and operations research. 18th international conference, MOTOR 2019, Ekaterinburg, Russia, July 8–12, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11548, 501-512 (2019). MSC: 49K20 49J20 PDF BibTeX XML Cite \textit{M. V. Plekhanova} and \textit{G. D. Baybulatova}, Lect. Notes Comput. Sci. 11548, 501--512 (2019; Zbl 1439.49040) Full Text: DOI
Postnova, E. A. Optimal motion control of the system modeled by double integrator of fractional order. (English. Russian original) Zbl 1432.49035 Autom. Remote Control 80, No. 4, 761-772 (2019); translation from Probl. Upr. 2018, No. 2, 40-46 (2018). MSC: 49K21 PDF BibTeX XML Cite \textit{E. A. Postnova}, Autom. Remote Control 80, No. 4, 761--772 (2019; Zbl 1432.49035); translation from Probl. Upr. 2018, No. 2, 40--46 (2018) Full Text: DOI
Postnov, Sergeĭ S. Optimal control problems for certain linear fractional-order systems given by equations with Hilfer derivative. (English. Russian original) Zbl 1432.49047 Autom. Remote Control 80, No. 4, 744-760 (2019); translation from Probl. Upr. 2018, No. 5, 14-25 (2018). MSC: 49N05 PDF BibTeX XML Cite \textit{S. S. Postnov}, Autom. Remote Control 80, No. 4, 744--760 (2019; Zbl 1432.49047); translation from Probl. Upr. 2018, No. 5, 14--25 (2018) Full Text: DOI
Dohr, Stefan; Kahle, Christian; Rogovs, Sergejs; Swierczynski, Piotr A FEM for an optimal control problem subject to the fractional Laplace equation. (English) Zbl 1427.65357 Calcolo 56, No. 4, Paper No. 37, 21 p. (2019). MSC: 65N30 35J15 49K20 35R11 65N15 65D30 49M25 PDF BibTeX XML Cite \textit{S. Dohr} et al., Calcolo 56, No. 4, Paper No. 37, 21 p. (2019; Zbl 1427.65357) Full Text: DOI arXiv
Li, Shengyue; Zhou, Zhaojie Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. (English) Zbl 1428.49032 Appl. Math. Comput. 350, 331-347 (2019). MSC: 49M25 49K20 35R11 PDF BibTeX XML Cite \textit{S. Li} and \textit{Z. Zhou}, Appl. Math. Comput. 350, 331--347 (2019; Zbl 1428.49032) Full Text: DOI
Wei, Ting; Xian, Jun Variational method for a backward problem for a time-fractional diffusion equation. (English) Zbl 07126993 ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1223-1244 (2019). MSC: 65M32 35R11 35A15 35A01 35A02 49N45 49N60 65F10 PDF BibTeX XML Cite \textit{T. Wei} and \textit{J. Xian}, ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1223--1244 (2019; Zbl 07126993) Full Text: DOI
Caballero, J.; Harjani, J.; Sadarangani, K. On positive solutions for a m-point fractional boundary value problem on an infinite interval. (English) Zbl 07124391 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3635-3647 (2019). MSC: 47H10 49L20 PDF BibTeX XML Cite \textit{J. Caballero} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3635--3647 (2019; Zbl 07124391) Full Text: DOI
Li, Xiuwen; Li, Yunxiang; Liu, Zhenhai; Li, Jing Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. (English) Zbl 1429.49031 Fract. Calc. Appl. Anal. 21, No. 6, 1439-1470 (2019). Reviewer: Tullio Zolezzi (Genova) MSC: 49K40 26A33 35R11 49K20 49K27 PDF BibTeX XML Cite \textit{X. Li} et al., Fract. Calc. Appl. Anal. 21, No. 6, 1439--1470 (2019; Zbl 1429.49031) Full Text: DOI
Cheng, Xiao-liang; Yuan, Le-le; Liang, Ke-wei A modified Tikhonov regularization method for a Cauchy problem of a time fractional diffusion equation. (English) Zbl 1449.35432 Appl. Math., Ser. B (Engl. Ed.) 34, No. 3, 284-308 (2019). MSC: 35R11 45Q05 49N45 PDF BibTeX XML Cite \textit{X.-l. Cheng} et al., Appl. Math., Ser. B (Engl. Ed.) 34, No. 3, 284--308 (2019; Zbl 1449.35432) Full Text: DOI
Almeida, Ricardo; Malinowska, Agnieszka B.; Odzijewicz, Tatiana Optimal leader-follower control for the fractional opinion formation model. (English) Zbl 1422.49027 J. Optim. Theory Appl. 182, No. 3, 1171-1185 (2019). MSC: 49K21 49M25 26A33 39A99 PDF BibTeX XML Cite \textit{R. Almeida} et al., J. Optim. Theory Appl. 182, No. 3, 1171--1185 (2019; Zbl 1422.49027) Full Text: DOI
Hyder, Abd-Allah; EL-Badawy, M. Distributed control for time-fractional differential system involving Schrödinger operator. (English) Zbl 1422.49006 J. Funct. Spaces 2019, Article ID 1389787, 8 p. (2019). MSC: 49J20 49N10 PDF BibTeX XML Cite \textit{A.-A. Hyder} and \textit{M. EL-Badawy}, J. Funct. Spaces 2019, Article ID 1389787, 8 p. (2019; Zbl 1422.49006) Full Text: DOI
D’Elia, Marta; Glusa, Christian; Otárola, Enrique A priori error estimates for the optimal control of the integral fractional Laplacian. (English) Zbl 07100201 SIAM J. Control Optim. 57, No. 4, 2775-2798 (2019). MSC: 35R11 49J20 49M25 65K10 65N15 65N30 PDF BibTeX XML Cite \textit{M. D'Elia} et al., SIAM J. Control Optim. 57, No. 4, 2775--2798 (2019; Zbl 07100201) Full Text: DOI arXiv
Han, Yuecai; Song, Qingshuo; Wang, Gu Exit problems as the generalized solutions of Dirichlet problems. (English) Zbl 1420.60091 SIAM J. Control Optim. 57, No. 4, 2392-2414 (2019). MSC: 60H30 47G20 93E20 60J75 49L25 35J60 35J66 PDF BibTeX XML Cite \textit{Y. Han} et al., SIAM J. Control Optim. 57, No. 4, 2392--2414 (2019; Zbl 1420.60091) Full Text: DOI
Zhang, Chenyang; Liu, Huipo; Zhou, Zhaojie A priori error analysis for time-stepping discontinuous Galerkin finite element approximation of time fractional optimal control problem. (English) Zbl 1419.49028 J. Sci. Comput. 80, No. 2, 993-1018 (2019). MSC: 49K20 49J20 65N15 65N30 PDF BibTeX XML Cite \textit{C. Zhang} et al., J. Sci. Comput. 80, No. 2, 993--1018 (2019; Zbl 1419.49028) Full Text: DOI
Lapin, A.; Laitinen, Erkki Efficient iterative method for solving optimal control problem governed by diffusion equation with time fractional derivative. (English) Zbl 1416.65272 Lobachevskii J. Math. 40, No. 4, 479-488 (2019). MSC: 65M06 35R11 49M25 65M12 PDF BibTeX XML Cite \textit{A. Lapin} and \textit{E. Laitinen}, Lobachevskii J. Math. 40, No. 4, 479--488 (2019; Zbl 1416.65272) Full Text: DOI
Zhang, Lu; Zhou, Zhaojie Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation. (English) Zbl 1425.49018 Appl. Numer. Math. 143, 247-262 (2019). MSC: 49M25 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{Z. Zhou}, Appl. Numer. Math. 143, 247--262 (2019; Zbl 1425.49018) Full Text: DOI
Zhou, Zhaojie; Tan, Zhiyu Finite element approximation of optimal control problem governed by space fractional equation. (English) Zbl 1417.49043 J. Sci. Comput. 78, No. 3, 1840-1861 (2019). MSC: 49M25 65N30 PDF BibTeX XML Cite \textit{Z. Zhou} and \textit{Z. Tan}, J. Sci. Comput. 78, No. 3, 1840--1861 (2019; Zbl 1417.49043) Full Text: DOI
Sweilam, N. H.; Saad, O. M.; Mohamed, D. G. Fractional optimal control in transmission dynamics of west nile virus model with state and control time delay: a numerical approach. (English) Zbl 07062672 Adv. Difference Equ. 2019, Paper No. 210, 25 p. (2019). MSC: 49J15 37N25 26A33 93C15 65L12 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Adv. Difference Equ. 2019, Paper No. 210, 25 p. (2019; Zbl 07062672) Full Text: DOI
Mohammadi, Fakhrodin; Hassani, Hossein Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. (English) Zbl 1409.49029 J. Optim. Theory Appl. 180, No. 2, 536-555 (2019). MSC: 49M30 35Q35 49J20 41A58 49J21 PDF BibTeX XML Cite \textit{F. Mohammadi} and \textit{H. Hassani}, J. Optim. Theory Appl. 180, No. 2, 536--555 (2019; Zbl 1409.49029) Full Text: DOI
Hosseinpour, Soleiman; Nazemi, Alireza; Tohidi, Emran Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems. (English) Zbl 07007578 J. Comput. Appl. Math. 351, 344-363 (2019). MSC: 65 49 PDF BibTeX XML Cite \textit{S. Hosseinpour} et al., J. Comput. Appl. Math. 351, 344--363 (2019; Zbl 07007578) Full Text: DOI
Lotfi, Ali Epsilon penalty method combined with an extension of the Ritz method for solving a class of fractional optimal control problems with mixed inequality constraints. (English) Zbl 1404.49015 Appl. Numer. Math. 135, 497-509 (2019). MSC: 49K40 34A08 49M30 PDF BibTeX XML Cite \textit{A. Lotfi}, Appl. Numer. Math. 135, 497--509 (2019; Zbl 1404.49015) Full Text: DOI
Zheng, Guang-Hui Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method. (English) Zbl 1404.65147 Appl. Numer. Math. 135, 99-128 (2019). MSC: 65M32 35R11 35R60 65T50 49N60 65N20 42A38 PDF BibTeX XML Cite \textit{G.-H. Zheng}, Appl. Numer. Math. 135, 99--128 (2019; Zbl 1404.65147) Full Text: DOI
Zeid, Samaneh Soradi; Effati, Sohrab; Kamyad, Ali Vahidian Approximation methods for solving fractional optimal control problems. (English) Zbl 1438.49045 Comput. Appl. Math. 37, No. 1, Suppl., 158-182 (2018). MSC: 49M05 49M25 65K99 PDF BibTeX XML Cite \textit{S. S. Zeid} et al., Comput. Appl. Math. 37, No. 1, 158--182 (2018; Zbl 1438.49045) Full Text: DOI
Otárola, Enrique; Salgado, Abner J. Optimization of a fractional differential equation. (English) Zbl 1418.49037 Antil, Harbir (ed.) et al., Frontiers in PDE-constrained optimization. Selected papers based on the presentations at the workshop, Minneapolis, MN, USA, June 6–10, 2016. New York, NY: Springer. IMA Vol. Math. Appl. 163, 291-316 (2018). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49N10 49N60 49J15 PDF BibTeX XML Cite \textit{E. Otárola} and \textit{A. J. Salgado}, IMA Vol. Math. Appl. 163, 291--316 (2018; Zbl 1418.49037) Full Text: DOI
Sweilam, Nasser; Al-Mekhlafi, Seham Shifted Chebyshev spectral-collocation method for solving optimal control of fractional multi-strain tuberculosis model. (English) Zbl 1424.37049 Fract. Differ. Calc. 8, No. 1, 1-31 (2018). MSC: 37N25 26A33 34A08 65L12 92C60 PDF BibTeX XML Cite \textit{N. Sweilam} and \textit{S. Al-Mekhlafi}, Fract. Differ. Calc. 8, No. 1, 1--31 (2018; Zbl 1424.37049) Full Text: DOI
Lotfi, Ali Combination of epsilon and Ritz methods with multiscaling basis for solving a class of fractional optimal control problems. (English) Zbl 1406.65044 J. Comput. Phys. 366, 107-119 (2018). MSC: 65K10 49M30 93C15 PDF BibTeX XML Cite \textit{A. Lotfi}, J. Comput. Phys. 366, 107--119 (2018; Zbl 1406.65044) Full Text: DOI
Majewski, Marek Existence and continuous dependence on parameters of solutions to certain types of differential and integral equations. (English) Zbl 07020396 Folia Math. 20, No. 1, 17-27 (2018). MSC: 35A15 26A33 49J15 45D05 34A12 PDF BibTeX XML Cite \textit{M. Majewski}, Folia Math. 20, No. 1, 17--27 (2018; Zbl 07020396) Full Text: Link
Rahimkhani, Parisa; Ordokhani, Yadollah Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. (English) Zbl 1406.49031 Optim. Control Appl. Methods 39, No. 6, 1916-1934 (2018). MSC: 49M25 65T60 34A08 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{Y. Ordokhani}, Optim. Control Appl. Methods 39, No. 6, 1916--1934 (2018; Zbl 1406.49031) Full Text: DOI
Sweilam, N. H.; Al-Mekhlafi, S. M.; Baleanu, D. Efficient numerical treatments for a fractional optimal control nonlinear tuberculosis model. (English) Zbl 1407.65226 Int. J. Biomath. 11, No. 8, Article ID 1850115, 31 p. (2018). MSC: 65M70 26A33 35R11 65H10 49M15 92C50 92C60 49K20 PDF BibTeX XML Cite \textit{N. H. Sweilam} et al., Int. J. Biomath. 11, No. 8, Article ID 1850115, 31 p. (2018; Zbl 1407.65226) Full Text: DOI
Bergounioux, Maïtine; Abraham, Isabelle; Abraham, Romain; Carlier, Guillaume; Le Pennec, Erwan; Trélat, Emmanuel Variational methods for tomographic reconstruction with few views. (English) Zbl 1408.49020 Milan J. Math. 86, No. 2, 157-200 (2018). Reviewer: Vanja Nikolić (Garching) MSC: 49K40 49N45 45Q05 65M32 94A08 PDF BibTeX XML Cite \textit{M. Bergounioux} et al., Milan J. Math. 86, No. 2, 157--200 (2018; Zbl 1408.49020) Full Text: DOI
Rabiei, Kobra; Ordokhani, Yadollah; Babolian, Esmaeil Fractional-order Legendre functions and their application to solve fractional optimal control of systems described by integro-differential equations. (English) Zbl 1404.49021 Acta Appl. Math. 158, No. 1, 87-106 (2018). MSC: 49M30 49K21 90C32 PDF BibTeX XML Cite \textit{K. Rabiei} et al., Acta Appl. Math. 158, No. 1, 87--106 (2018; Zbl 1404.49021) Full Text: DOI
Antil, Harbir; Otárola, Enrique An a posteriori error analysis for an optimal control problem involving the fractional Laplacian. (English) Zbl 06983811 IMA J. Numer. Anal. 38, No. 1, 198-226 (2018). MSC: 65 PDF BibTeX XML Cite \textit{H. Antil} and \textit{E. Otárola}, IMA J. Numer. Anal. 38, No. 1, 198--226 (2018; Zbl 06983811) Full Text: DOI
Rabiei, Kobra; Ordokhani, Yadollah; Babolian, Esmaeil Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems. (English) Zbl 1400.93133 J. Vib. Control 24, No. 15, 3370-3383 (2018). MSC: 93C30 34A08 PDF BibTeX XML Cite \textit{K. Rabiei} et al., J. Vib. Control 24, No. 15, 3370--3383 (2018; Zbl 1400.93133) Full Text: DOI
Rakhshan, Seyed Ali; Effati, Sohrab; Kamyad, Ali Vahidian Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation. (English) Zbl 1400.93123 J. Vib. Control 24, No. 9, 1741-1756 (2018). MSC: 93C23 26A33 PDF BibTeX XML Cite \textit{S. A. Rakhshan} et al., J. Vib. Control 24, No. 9, 1741--1756 (2018; Zbl 1400.93123) Full Text: DOI
Sahu, P. K.; Saha Ray, S. Comparison on wavelets techniques for solving fractional optimal control problems. (English) Zbl 1400.93124 J. Vib. Control 24, No. 6, 1185-1201 (2018). MSC: 93C23 65T60 PDF BibTeX XML Cite \textit{P. K. Sahu} and \textit{S. Saha Ray}, J. Vib. Control 24, No. 6, 1185--1201 (2018; Zbl 1400.93124) Full Text: DOI
Kubyshkin, V. A.; Postnov, S. S. Time-optimal boundary control for systems defined by a fractional order diffusion equation. (English. Russian original) Zbl 1400.49039 Autom. Remote Control 79, No. 5, 884-896 (2018); translation from Avtom. Telemekh. 2018, No. 5, 137-152 (2018). MSC: 49M30 35Q93 35R11 93C20 49M25 PDF BibTeX XML Cite \textit{V. A. Kubyshkin} and \textit{S. S. Postnov}, Autom. Remote Control 79, No. 5, 884--896 (2018; Zbl 1400.49039); translation from Avtom. Telemekh. 2018, No. 5, 137--152 (2018) Full Text: DOI
Zhou, Zhaojie; Zhang, Chenyang Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation. (English) Zbl 1400.49035 Numer. Algorithms 79, No. 2, 437-455 (2018). MSC: 49M25 49K20 49J20 65M60 65M15 PDF BibTeX XML Cite \textit{Z. Zhou} and \textit{C. Zhang}, Numer. Algorithms 79, No. 2, 437--455 (2018; Zbl 1400.49035) Full Text: DOI
Rakhshan, Seyed Ali; Effati, Sohrab The Laplace-collocation method for solving fractional differential equations and a class of fractional optimal control problems. (English) Zbl 1398.65193 Optim. Control Appl. Methods 39, No. 2, 1110-1129 (2018). MSC: 65L60 34A08 PDF BibTeX XML Cite \textit{S. A. Rakhshan} and \textit{S. Effati}, Optim. Control Appl. Methods 39, No. 2, 1110--1129 (2018; Zbl 1398.65193) Full Text: DOI
Antil, Harbir; Rautenberg, Carlos N. Fractional elliptic quasi-variational inequalities: theory and numerics. (English) Zbl 1390.35427 Interfaces Free Bound. 20, No. 1, 1-24 (2018). MSC: 35R35 35J75 35R11 49M25 65M60 PDF BibTeX XML Cite \textit{H. Antil} and \textit{C. N. Rautenberg}, Interfaces Free Bound. 20, No. 1, 1--24 (2018; Zbl 1390.35427) Full Text: DOI arXiv
Ciaurri, Óscar; Roncal, Luz; Stinga, Pablo Raúl; Torrea, José L.; Varona, Juan Luis Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. (English) Zbl 1391.35388 Adv. Math. 330, 688-738 (2018). MSC: 35R11 49M25 35K05 65N15 PDF BibTeX XML Cite \textit{Ó. Ciaurri} et al., Adv. Math. 330, 688--738 (2018; Zbl 1391.35388) Full Text: DOI
Matychyn, Ivan; Onyshchenko, Viktoriia On time-optimal control of fractional-order systems. (English) Zbl 1392.49031 J. Comput. Appl. Math. 339, 245-257 (2018). Reviewer: Treanta Savin (Bucharest) MSC: 49K15 49N05 33E12 PDF BibTeX XML Cite \textit{I. Matychyn} and \textit{V. Onyshchenko}, J. Comput. Appl. Math. 339, 245--257 (2018; Zbl 1392.49031) Full Text: DOI
Geraci, Francesco The classical obstacle problem with coefficients in fractional Sobolev spaces. (English) Zbl 1388.35229 Ann. Mat. Pura Appl. (4) 197, No. 2, 549-581 (2018). Reviewer: Dian K. Palagachev (Bari) MSC: 35R35 49N60 PDF BibTeX XML Cite \textit{F. Geraci}, Ann. Mat. Pura Appl. (4) 197, No. 2, 549--581 (2018; Zbl 1388.35229) Full Text: DOI arXiv
Rabiei, Kobra; Ordokhani, Yadollah; Babolian, Esmaeil Numerical solution of 1D and 2D fractional optimal control of system via Bernoulli polynomials. (English) Zbl 1383.65067 Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 7, 17 p. (2018). MSC: 65K10 49J15 49M37 26A33 PDF BibTeX XML Cite \textit{K. Rabiei} et al., Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 7, 17 p. (2018; Zbl 1383.65067) Full Text: DOI
Otárola, Enrique; Salgado, Abner J. Sparse optimal control for fractional diffusion. (English) Zbl 1388.35214 Comput. Methods Appl. Math. 18, No. 1, 95-110 (2018). MSC: 35R11 35J70 49K20 49M25 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{E. Otárola} and \textit{A. J. Salgado}, Comput. Methods Appl. Math. 18, No. 1, 95--110 (2018; Zbl 1388.35214) Full Text: DOI
Yamamoto, Masahiro Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations. (English) Zbl 06824869 J. Math. Anal. Appl. 460, No. 1, 365-381 (2018). MSC: 35 65 PDF BibTeX XML Cite \textit{M. Yamamoto}, J. Math. Anal. Appl. 460, No. 1, 365--381 (2018; Zbl 06824869) Full Text: DOI
Alipour, Mohsen Numerical study on multi-order multi-dimensional fractional optimal control problem in general form. (English) Zbl 07244553 Kuwait J. Sci. 44, No. 3, 9-19 (2017). MSC: 65 42 PDF BibTeX XML Cite \textit{M. Alipour}, Kuwait J. Sci. 44, No. 3, 9--19 (2017; Zbl 07244553) Full Text: Link
Chen, Wen; Wang, Song A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing. (English) Zbl 1411.91617 Appl. Math. Comput. 305, 174-187 (2017). MSC: 91G60 91G20 35R11 35Q91 PDF BibTeX XML Cite \textit{W. Chen} and \textit{S. Wang}, Appl. Math. Comput. 305, 174--187 (2017; Zbl 1411.91617) Full Text: DOI
Zeid, Samaneh Soradi; Yousefi, Mostafa A new modification of Legendre-Gauss collocation method for solving a class of fractional optimal control problems. (English) Zbl 1407.49034 J. Mahani Math. Res. Cent. 6, No. 2, 81-94 (2017). MSC: 49K30 65M70 35R11 PDF BibTeX XML Cite \textit{S. S. Zeid} and \textit{M. Yousefi}, J. Mahani Math. Res. Cent. 6, No. 2, 81--94 (2017; Zbl 1407.49034) Full Text: DOI
Rakhshan, Seyed Ali; Effati, Sohrab; Kamyad, Ali Vahidian Comments on “A discrete method to solve fractional optimal control problems”. (English) Zbl 1384.49021 Nonlinear Dyn. 87, No. 3, 2067-2071 (2017). MSC: 49K15 34A08 65L10 PDF BibTeX XML Cite \textit{S. A. Rakhshan} et al., Nonlinear Dyn. 87, No. 3, 2067--2071 (2017; Zbl 1384.49021) Full Text: DOI
Levajković, Tijana; Mena, Hermann; Tuffaha, Amjad The stochastic LQR optimal control with fractional Brownian motion. (English) Zbl 1385.49018 Oberguggenberger, Michael (ed.) et al., Generalized functions and Fourier analysis. Dedicated to Stevan Pilipović on the occasion of his 65th birthday. Contributions of the 8th, 9th and 10th ISAAC congresses, Moscow, Russia, 2011, Krakow, Poland, 2013 and Macau, China, 2015. Basel: Birkhäuser/Springer (ISBN 978-3-319-51910-4/hbk; 978-3-319-51911-1/ebook). Operator Theory: Advances and Applications 260. Advances in Partial Differential Equations, 115-151 (2017). MSC: 49K45 93E20 60H07 49N10 60G22 PDF BibTeX XML Cite \textit{T. Levajković} et al., Oper. Theory: Adv. Appl. 260, 115--151 (2017; Zbl 1385.49018) Full Text: DOI
Postnov, S. S. Optimal control problems for linear fractional-order systems defined by equations with Hadamard derivative. (English. Russian original) Zbl 1382.49019 Dokl. Math. 96, No. 2, 531-534 (2017); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 476, No. 2, 143-147 (2017). MSC: 49K21 PDF BibTeX XML Cite \textit{S. S. Postnov}, Dokl. Math. 96, No. 2, 531--534 (2017; Zbl 1382.49019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 476, No. 2, 143--147 (2017) Full Text: DOI
Zeid, Samaneh Soradi; Kamyad, Ali Vahidian; Effati, Sohrab; Rakhshan, Seyed Ali; Hosseinpour, Soleiman Numerical solutions for solving a class of fractional optimal control problems via fixed-point approach. (English) Zbl 1381.49031 S\(\vec{\text{e}}\)MA J. 74, No. 4, 585-603 (2017). MSC: 49M25 49L99 65L03 34A08 47H10 PDF BibTeX XML Cite \textit{S. S. Zeid} et al., S\(\vec{\text{e}}\)MA J. 74, No. 4, 585--603 (2017; Zbl 1381.49031) Full Text: DOI
Ghasemi, Safiye; Nazemi, Alireza; Hosseinpour, Soleiman Nonlinear fractional optimal control problems with neural network and dynamic optimization schemes. (English) Zbl 1377.93078 Nonlinear Dyn. 89, No. 4, 2669-2682 (2017). MSC: 93C10 92B20 34A08 PDF BibTeX XML Cite \textit{S. Ghasemi} et al., Nonlinear Dyn. 89, No. 4, 2669--2682 (2017; Zbl 1377.93078) Full Text: DOI
Ezz-Eldien, S. S.; Doha, E. H.; Baleanu, D.; Bhrawy, A. H. A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. (English) Zbl 1373.49029 J. Vib. Control 23, No. 1, 16-30 (2017). MSC: 49M25 42C10 26A33 PDF BibTeX XML Cite \textit{S. S. Ezz-Eldien} et al., J. Vib. Control 23, No. 1, 16--30 (2017; Zbl 1373.49029) Full Text: DOI
Singha, Neelam; Nahak, Chandal An efficient approximation technique for solving a class of fractional optimal control problems. (English) Zbl 1377.49031 J. Optim. Theory Appl. 174, No. 3, 785-802 (2017). MSC: 49M25 26A33 49M30 49M37 PDF BibTeX XML Cite \textit{N. Singha} and \textit{C. Nahak}, J. Optim. Theory Appl. 174, No. 3, 785--802 (2017; Zbl 1377.49031) Full Text: DOI
Lotfi, Ali; Yousefi, Sohrab Ali A generalization of Ritz-variational method for solving a class of fractional optimization problems. (English) Zbl 1378.49029 J. Optim. Theory Appl. 174, No. 1, 238-255 (2017). MSC: 49M25 49J40 34A08 PDF BibTeX XML Cite \textit{A. Lotfi} and \textit{S. A. Yousefi}, J. Optim. Theory Appl. 174, No. 1, 238--255 (2017; Zbl 1378.49029) Full Text: DOI
Lotfi, Ali A combination of variational and penalty methods for solving a class of fractional optimal control problems. (English) Zbl 1378.49032 J. Optim. Theory Appl. 174, No. 1, 65-82 (2017). MSC: 49M30 49J40 49M25 34A08 PDF BibTeX XML Cite \textit{A. Lotfi}, J. Optim. Theory Appl. 174, No. 1, 65--82 (2017; Zbl 1378.49032) Full Text: DOI
Kamocki, Rafał; Majewski, Marek On the existence and continuous dependence on parameter of solutions to some fractional Dirichlet problem with application to Lagrange optimal control problem. (English) Zbl 1377.35268 J. Optim. Theory Appl. 174, No. 1, 32-46 (2017). MSC: 35R11 35A15 49J15 PDF BibTeX XML Cite \textit{R. Kamocki} and \textit{M. Majewski}, J. Optim. Theory Appl. 174, No. 1, 32--46 (2017; Zbl 1377.35268) Full Text: DOI
Otárola, Enrique A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. (English) Zbl 1377.49030 ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1473-1500 (2017). MSC: 49M25 35J70 35R11 65N30 49J20 65N12 PDF BibTeX XML Cite \textit{E. Otárola}, ESAIM, Math. Model. Numer. Anal. 51, No. 4, 1473--1500 (2017; Zbl 1377.49030) Full Text: DOI
Farhadi, A.; Erjaee, G. H.; Salehi, M. Derivation of a new Merton’s optimal problem presented by fractional stochastic stock price and its applications. (English) Zbl 1372.91095 Comput. Math. Appl. 73, No. 9, 2066-2075 (2017). MSC: 91G10 60H30 93E20 PDF BibTeX XML Cite \textit{A. Farhadi} et al., Comput. Math. Appl. 73, No. 9, 2066--2075 (2017; Zbl 1372.91095) Full Text: DOI
Medhin, N. G.; Sambandham, M. Impulsive control problem governed by fractional differential equations and applications. (English) Zbl 1376.49046 Dyn. Syst. Appl. 26, No. 1, 37-64 (2017). MSC: 49N25 92C40 92C50 34A08 PDF BibTeX XML Cite \textit{N. G. Medhin} and \textit{M. Sambandham}, Dyn. Syst. Appl. 26, No. 1, 37--64 (2017; Zbl 1376.49046)
Levajković, Tijana; Mena, Hermann Equations involving Malliavin calculus operators. Applications and numerical approximation. (English) Zbl 1388.60007 SpringerBriefs in Mathematics. Cham: Springer (ISBN 978-3-319-65677-9/pbk; 978-3-319-65678-6/ebook). x, 132 p. (2017). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60-02 60H07 60H10 60H15 60H40 49J55 PDF BibTeX XML Cite \textit{T. Levajković} and \textit{H. Mena}, Equations involving Malliavin calculus operators. Applications and numerical approximation. Cham: Springer (2017; Zbl 1388.60007) Full Text: DOI
Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique. (English) Zbl 1370.49027 Int. J. Control 90, No. 6, 1230-1244 (2017). MSC: 49M30 34A08 65M70 33C45 PDF BibTeX XML Cite \textit{A. H. Bhrawy} et al., Int. J. Control 90, No. 6, 1230--1244 (2017; Zbl 1370.49027) Full Text: DOI
Dipierro, Serena; Medina, María; Valdinoci, Enrico Fractional elliptic problems with critical growth in the whole of \(\mathbb R^n\). (English) Zbl 1375.49001 Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 15. Pisa: Edizioni della Normale (ISBN 978-88-7642-600-1/pbk; 978-88-7642-601-8/ebook). viii, 155 p. (2017). Reviewer: Raffaella Servadei (Arcavata di Rende) MSC: 49-02 35-02 35R11 49J35 35A15 35S15 47G20 35B65 35B09 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Fractional elliptic problems with critical growth in the whole of \(\mathbb R^n\). Pisa: Edizioni della Normale (2017; Zbl 1375.49001) Full Text: DOI
Bardeji, Somayeh Gh.; Figueiredo, Isabel N.; Sousa, Ercília Optical flow with fractional order regularization: variational model and solution method. (English) Zbl 1357.65081 Appl. Numer. Math. 114, 188-200 (2017). MSC: 65K10 49J20 65D18 49M25 PDF BibTeX XML Cite \textit{S. Gh. Bardeji} et al., Appl. Numer. Math. 114, 188--200 (2017; Zbl 1357.65081) Full Text: DOI
Safaie, Elahe; Farahi, Mohammad Hadi An approximate method for solving fractional TBVP with state delay by Bernstein polynomials. (English) Zbl 1419.34215 Adv. Difference Equ. 2016, Paper No. 298, 16 p. (2016). MSC: 34K37 34B10 PDF BibTeX XML Cite \textit{E. Safaie} and \textit{M. H. Farahi}, Adv. Difference Equ. 2016, Paper No. 298, 16 p. (2016; Zbl 1419.34215) Full Text: DOI
Soradi Zeid, S.; Yousefi, M.; Yousefi, M. Approximated solutions of linear quadratic fractional optimal control problems. (English) Zbl 06932194 J. Appl. Math. Stat. Inform. 12, No. 2, 83-94 (2016). MSC: 65D25 34A08 26A33 49M27 PDF BibTeX XML Cite \textit{S. Soradi Zeid} et al., J. Appl. Math. Stat. Inform. 12, No. 2, 83--94 (2016; Zbl 06932194) Full Text: DOI
Medhin, N. G.; Sambandham, M. Impulsive control problem governed by fractional partial differential equations and applications. (English) Zbl 1391.49042 Ladde, G. S. (ed.) et al., Dynamic systems and applications. Vol. 7. Proceedings of the 7th international conference, Morehouse College, Atlanta, GA, USA, May 27–30, 2015. Atlanta, GA: Dynamic Publishers (ISBN 1-890888-07-9/hbk). 162-170 (2016). MSC: 49K20 35R11 26A33 49N25 PDF BibTeX XML Cite \textit{N. G. Medhin} and \textit{M. Sambandham}, in: Dynamic systems and applications. Vol. 7. Proceedings of the 7th international conference, Morehouse College, Atlanta, GA, USA, May 27--30, 2015. Atlanta, GA: Dynamic Publishers. 162--170 (2016; Zbl 1391.49042)
Bhrawy, A. H.; Ezz-Eldien, S. S. A new Legendre operational technique for delay fractional optimal control problems. (English) Zbl 1377.49032 Calcolo 53, No. 4, 521-543 (2016). MSC: 49M30 49M25 PDF BibTeX XML Cite \textit{A. H. Bhrawy} and \textit{S. S. Ezz-Eldien}, Calcolo 53, No. 4, 521--543 (2016; Zbl 1377.49032) Full Text: DOI
Rahimkhani, P.; Ordokhani, Y.; Babolian, E. An efficient approximate method for solving delay fractional optimal control problems. (English) Zbl 1371.34016 Nonlinear Dyn. 86, No. 3, 1649-1661 (2016). MSC: 34A08 34H05 49K15 PDF BibTeX XML Cite \textit{P. Rahimkhani} et al., Nonlinear Dyn. 86, No. 3, 1649--1661 (2016; Zbl 1371.34016) Full Text: DOI
Cao, Xianbing; Datta, Abhirup; Al Basir, Fahad; Roy, Priti Kumar Fractional-order model of the disease psoriasis: a control based mathematical approach. (English) Zbl 1369.92051 J. Syst. Sci. Complex. 29, No. 6, 1565-1584 (2016). MSC: 92C50 34A08 93A30 49J15 49M30 PDF BibTeX XML Cite \textit{X. Cao} et al., J. Syst. Sci. Complex. 29, No. 6, 1565--1584 (2016; Zbl 1369.92051) Full Text: DOI
Rakhshan, Seyed Ali; Vahidian Kamyad, Ali; Effati, Sohrab An efficient method to solve a fractional differential equation by using linear programming and its application to an optimal control problem. (English) Zbl 1365.26008 J. Vib. Control 22, No. 8, 2120-2134 (2016). MSC: 26A33 65Q20 90C05 PDF BibTeX XML Cite \textit{S. A. Rakhshan} et al., J. Vib. Control 22, No. 8, 2120--2134 (2016; Zbl 1365.26008) Full Text: DOI
Shnurkov, P. V. Solution of the unconditional extremum problem for a linear-fractional integral functional on a set of probability measures. (English. Russian original) Zbl 1359.60068 Dokl. Math. 94, No. 2, 550-554 (2016); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 470, No. 4, 387-392 (2016). MSC: 60G70 60K15 93E20 49J55 90C40 90C32 PDF BibTeX XML Cite \textit{P. V. Shnurkov}, Dokl. Math. 94, No. 2, 550--554 (2016; Zbl 1359.60068); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 470, No. 4, 387--392 (2016) Full Text: DOI
Soolaki, Javad; Fard, Omid Solaymani; Borzabadi, Akbar Hashemi Generalized Euler-Lagrange equations for fuzzy fractional variational calculus. (English) Zbl 1362.65067 Math. Commun. 21, No. 2, 199-218 (2016). Reviewer: Başak Akteke-Öztürk (Ankara) MSC: 65K10 26A33 49J20 49M25 PDF BibTeX XML Cite \textit{J. Soolaki} et al., Math. Commun. 21, No. 2, 199--218 (2016; Zbl 1362.65067) Full Text: Link
Ghomanjani, F. A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations. (English) Zbl 1352.65163 J. Egypt. Math. Soc. 24, No. 4, 638-643 (2016). MSC: 65K10 49J15 49M15 65L05 34A08 PDF BibTeX XML Cite \textit{F. Ghomanjani}, J. Egypt. Math. Soc. 24, No. 4, 638--643 (2016; Zbl 1352.65163) Full Text: DOI
Mophou, G.; Joseph, C. Optimal control with final observation of a fractional diffusion wave equation. (English) Zbl 1350.49003 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 23, No. 5, 341-364 (2016). MSC: 49J20 49K20 35R11 26A33 PDF BibTeX XML Cite \textit{G. Mophou} and \textit{C. Joseph}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 23, No. 5, 341--364 (2016; Zbl 1350.49003) Full Text: Link
Otárola, Enrique; Salgado, Abner J. Finite element approximation of the parabolic fractional obstacle problem. (English) Zbl 1349.65473 SIAM J. Numer. Anal. 54, No. 4, 2619-2639 (2016). MSC: 65M60 35R11 35R35 49M15 49M20 49M25 65M12 PDF BibTeX XML Cite \textit{E. Otárola} and \textit{A. J. Salgado}, SIAM J. Numer. Anal. 54, No. 4, 2619--2639 (2016; Zbl 1349.65473) Full Text: DOI
Antil, Harbir; Otárola, Enrique; Salgado, Abner J. A space-time fractional optimal control problem: analysis and discretization. (English) Zbl 1339.49003 SIAM J. Control Optim. 54, No. 3, 1295-1328 (2016). MSC: 49J20 49N10 49M25 35R11 35J70 26A33 65M06 65M60 65M12 65M15 65R10 PDF BibTeX XML Cite \textit{H. Antil} et al., SIAM J. Control Optim. 54, No. 3, 1295--1328 (2016; Zbl 1339.49003) Full Text: DOI
Idczak, Dariusz; Walczak, Stanislaw On a linear-quadratic problem with Caputo derivative. (English) Zbl 1343.49055 Opusc. Math. 36, No. 1, 49-68 (2016). MSC: 49N10 49J15 49K15 49M37 34A08 26A33 PDF BibTeX XML Cite \textit{D. Idczak} and \textit{S. Walczak}, Opusc. Math. 36, No. 1, 49--68 (2016; Zbl 1343.49055) Full Text: DOI
Ye, Xingyang; Xu, Chuanju A space-time spectral method for the time fractional diffusion optimal control problems. (English) Zbl 1422.35181 Adv. Difference Equ. 2015, Paper No. 156, 20 p. (2015). MSC: 35R11 65M70 49J20 34A08 PDF BibTeX XML Cite \textit{X. Ye} and \textit{C. Xu}, Adv. Difference Equ. 2015, Paper No. 156, 20 p. (2015; Zbl 1422.35181) Full Text: DOI
Ye, Xingyang; Xu, Chuanju A posteriori error estimates for the fractional optimal control problems. (English) Zbl 1376.49029 J. Inequal. Appl. 2015, Paper No. 141, 13 p. (2015). MSC: 49K20 49M30 PDF BibTeX XML Cite \textit{X. Ye} and \textit{C. Xu}, J. Inequal. Appl. 2015, Paper No. 141, 13 p. (2015; Zbl 1376.49029) Full Text: DOI
Basir, Fahad Al; Elaiw, Ahmed M.; Kesh, Dipak; Roy, Priti Kumar Optimal control of a fractional-order enzyme kinetic model. (English) Zbl 1347.49065 Control Cybern. 44, No. 4, 443-461 (2015). MSC: 49N90 92C37 93C15 34A08 93A30 PDF BibTeX XML Cite \textit{F. A. Basir} et al., Control Cybern. 44, No. 4, 443--461 (2015; Zbl 1347.49065)
Wang, Qiuxi Maximum principle for controlled fractional Fokker-Planck equations. (English) Zbl 1346.35221 Adv. Difference Equ. 2015, Paper No. 45, 13 p. (2015). MSC: 35R11 PDF BibTeX XML Cite \textit{Q. Wang}, Adv. Difference Equ. 2015, Paper No. 45, 13 p. (2015; Zbl 1346.35221) Full Text: DOI
Doha, Eid; Bhrawy, Ali; Baleanu, Dumitru; Ezz-Eldien, Samer; Hafez, Ramy An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. (English) Zbl 1423.49018 Adv. Difference Equ. 2015, Paper No. 15, 17 p. (2015). MSC: 49K15 49M25 30C45 65L60 PDF BibTeX XML Cite \textit{E. Doha} et al., Adv. Difference Equ. 2015, Paper No. 15, 17 p. (2015; Zbl 1423.49018) Full Text: DOI
Bhrawy, A. H.; Doha, E. H.; Machado, J. A. Tenreiro; Ezz-Eldien, S. S. An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. (English) Zbl 1341.49037 Asian J. Control 17, No. 6, 2389-2402 (2015). MSC: 49M30 35A08 26A33 PDF BibTeX XML Cite \textit{A. H. Bhrawy} et al., Asian J. Control 17, No. 6, 2389--2402 (2015; Zbl 1341.49037) Full Text: DOI
Kamocki, Rafał; Majewski, Marek Fractional linear control systems with Caputo derivative and their optimization. (English) Zbl 1333.93124 Optim. Control Appl. Methods 36, No. 6, 953-967 (2015). MSC: 93C15 34A08 93C05 49J15 49K15 PDF BibTeX XML Cite \textit{R. Kamocki} and \textit{M. Majewski}, Optim. Control Appl. Methods 36, No. 6, 953--967 (2015; Zbl 1333.93124) Full Text: DOI
Antil, Harbir; Otárola, Enrique A FEM for an optimal control problem of fractional powers of elliptic operators. (English) Zbl 1331.49038 SIAM J. Control Optim. 53, No. 6, 3432-3456 (2015). MSC: 49M25 65N12 65N30 35J20 35J70 35R11 49J20 49N10 PDF BibTeX XML Cite \textit{H. Antil} and \textit{E. Otárola}, SIAM J. Control Optim. 53, No. 6, 3432--3456 (2015; Zbl 1331.49038) Full Text: DOI arXiv
Safaie, E.; Farahi, M. H.; Farmani Ardehaie, M. An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials. (English) Zbl 1326.49047 Comput. Appl. Math. 34, No. 3, 831-846 (2015). MSC: 49M30 49M25 49J15 49J21 34A08 34K35 26A33 PDF BibTeX XML Cite \textit{E. Safaie} et al., Comput. Appl. Math. 34, No. 3, 831--846 (2015; Zbl 1326.49047) Full Text: DOI